CHEMISTRY (CHGN)

CHGN111. INTRODUCTORY CHEMISTRY. 3.0 Semester Hrs.
(S) Introductory college chemistry. Elementary atomic structure and the periodic chart, chemical bonding, chemical reactions and stoichiometry of chemical reactions, chemical equilibrium, thermodynamics, and properties of gases. Must not be used for elective credit. Does not apply toward undergraduate degree or g.p.a. 3 hours lecture and 3 hours lab; 3 semester hours.

CHGN121. PRINCIPLES OF CHEMISTRY I. 4.0 Semester Hrs.
Study of matter and energy based on atomic structure, correlation of properties of elements with position in periodic chart, chemical bonding, geometry of molecules, phase changes, stoichiometry, solution chemistry, gas laws, and thermodynamics. 3 hours lecture, 3 hours lab; 4 semester hours. Approved for Colorado Guaranteed General Education transfer. Equivalency for GT-SC1.

CHGN122. PRINCIPLES OF CHEMISTRY II (SC1). 4.0 Semester Hrs.
(I, II, S) Continuation of CHGN121 concentrating on chemical kinetics, gas laws, thermodynamics, electrochemistry and chemical equilibrium (acid-base, solubility, complexation, and redox). Laboratory experiments emphasizing quantitative chemical measurements. Prerequisite: Grade of C- or better in CHGN121. 3 hours lecture; 3 hours lab, 4 semester hours.

CHGN125. MOLECULAR ENGINEERING & MATERIALS CHEMISTRY. 4.0 Semester Hrs.
(I,II) Studies of the interactions of matter and energy in chemical reactions and physical processes. Building on principles from CHGN121, the course systematically explores the relationships between processes, structures and properties, starting from the atomic and molecular level. It provides a framework to apply knowledge of chemical bonding and material properties to engineering design, with an emphasis on the Engineering Grand Challenges and the discovery of new process-material properties to engineering design, with an emphasis on the understanding of nanotechnology and the underpinning principles involved. 3 hours lecture; 3 semester hours. Approved for Colorado Guaranteed General Education transfer. Equivalency for GT-SC1.

CHGN198. SPECIAL TOPICS. 6.0 Semester Hrs.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

CHGN199. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: "Independent Study" form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

CHGN209. INTRODUCTION TO CHEMICAL THERMODYNAMICS. 3.0 Semester Hrs.
(I, II, S) Introduction to the fundamental principles of classical thermodynamics, with particular emphasis on chemical and phase equilibria. Volume-temperature-pressure relationships for solids, liquids, and gases; ideal and non-ideal gases. Introduction to kinetic-molecular theory of ideal gases and the Maxwell-Boltzmann distributions. Work, heat, and application of the First Law to closed systems, including chemical reactions. Entropy and the Second and Third Laws; Gibbs Free Energy. Chemical equilibrium and the equilibrium constant; introduction to activities & fugacities. One- and two-component phase diagrams; Gibbs Phase Rule. May not also receive credit for CBEN210 or GEGN330. Prerequisites: CHGN121, CHGN122 or CHGN125, MATH111, MATH112, PHGN100. 3 hours lecture; 3 semester hours.

CHGN221. ORGANIC CHEMISTRY I. 3.0 Semester Hrs.
(I,S) Structure, properties, and reactions of the important classes of organic compounds, introduction to reaction mechanisms. Prerequisites: Grade of C- or better in CHGN122 or CHGN125. 3 hours lecture; 3 semester hours.

CHGN222. ORGANIC CHEMISTRY II. 3.0 Semester Hrs.
(I, II) Continuation of CHGN221. Prerequisites: Grade of C- or better in CHGN221. 3 hours lecture; 3 semester hours.

CHGN223. ORGANIC CHEMISTRY I LABORATORY. 1.0 Semester Hr.
(I,II, S) Laboratory exercises including purification techniques, synthesis, and characterization. Experiments are designed to support concepts presented in the CHGN221. Students are introduced to Green Chemistry principles and methods of synthesis and the use of computational software. Prerequisites: CHGN221 or concurrent enrollment. 3 hours laboratory, 1 semester hour.

CHGN224. ORGANIC CHEMISTRY II LABORATORY. 1.0 Semester Hr.
Laboratory exercises using more advanced synthesis techniques. Experiments are designed to support concepts presented in CHGN222. Prerequisite: CHGN223. Co-requisite: CHGN222.

CHGN298. SPECIAL TOPICS. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

CHGN299. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: "Independent Study" form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

CHGN311. INTRODUCTION TO NANOSCIENCE AND NANOTECHNOLOGY. 3.0 Semester Hrs.
(II) The primary objective of this course is to provide all students a suitable background to understand the role nanotechnology will play in future technologies and the underpinning principals involved. 3 hours lecture; 3 semester hours. Prerequisite: CHGN121.

CHGN323. QUALITATIVE ORGANIC ANALYSIS AND APPLIED SPECTROSCOPY. 2.0 Semester Hrs.
(I,II) Identification, separation and purification of organic compounds including use of modern physical and instrumental methods. Prerequisite: Grade of C- or better in CHGN222, CHGN224. 1 hour lecture; 3 hours lab; 2 semester hours.
CHGN335. INSTRUMENTAL ANALYSIS. 3.0 Semester Hrs.
Principles of AAS, AES, Visible-UV, IR, NMR, XRF, XRD, XPS, electron, and mass spectrometry; gas and liquid chromatography; data interpretation. Prerequisite: CHGN122 with a grade of C- or better or CHGN125 with a grade of C- or better.

CHGN336. ANALYTICAL CHEMISTRY. 3.0 Semester Hrs.
Theory and techniques of gravimetry, titrimetry (acid-base, complexometric, redox, precipitation), electrochemical analysis, chemical separations; statistical evaluation of data. Prerequisite: CHGN221, CHGN122 with a grade of C- or better or CHGN125 with a grade of C- or better.

CHGN337. ANALYTICAL CHEMISTRY LABORATORY. 1.0 Semester Hr.
Laboratory exercises emphasizing sample preparation and instrumental methods of analysis. Prerequisite: CHGN221 (C- or better), CHGN 223. Co-requisite: CHGN336.

CHGN340. COOPERATIVE EDUCATION. 3.0 Semester Hrs.
(I, II, S) Supervised, full-time, chemistry-related employment for a continuous six-month period (or its equivalent) in which specific educational objectives are achieved. Prerequisite: Second semester sophomore status and a cumulative grade-point average of at least 2.00. 0 to 3 semester hours. Cooperative Education credit does not count toward graduation except under special conditions.

CHGN341. INORGANIC CHEMISTRY I. 3.0 Semester Hrs.
(I) The chemistry of the elements and periodic trends in reactivity is discussed. Particular concepts covered include group theory, symmetry, bonding in ionic and metallic crystal, acid-base theories, coordination chemistry, ligand field theory and radioactivity. 3 hours lecture; 3 semester hours. Prerequisite: CHGN222 and CHGN209 or CBEN210.

CHGN351. PHYSICAL CHEMISTRY: A MOLECULAR PERSPECTIVE I. 4.0 Semester Hrs.
(I,II,S) A study of chemical systems from a molecular physical chemistry perspective. Includes an introduction to quantum mechanics, atoms and molecules, spectroscopy, bonding and symmetry, and an introduction to modern computational chemistry. Prerequisite: MATH225; PHGN200; Grade of C- or better in CHGN 122 or CHGN 125; and Grade of C- or better in CHGN209 or CBEN210. 3 hours lecture; 3 hours lab; 4 semester hours. Prerequisite: CHGN351. 3 hours lecture; 3 semester hours.

CHGN353. PHYSICAL CHEMISTRY: A MOLECULAR PERSPECTIVE II. 4.0 Semester Hrs.
(II) A continuation of CHGN351. Includes statistical thermodynamics, chemical kinetics, chemical reaction mechanisms, electrochemistry, and selected additional topics. Prerequisite: CHGN351. 3 hours lecture; 3 hours laboratory; 4 semester hours.

CHGN395. INTRODUCTION TO UNDERGRADUATE RESEARCH. 1.0 Semester Hr.
(I) (WI) Introduction to Undergraduate Research is designed to introduce students to the research endeavor. Topics include ethics, hypothesis testing, critical evaluation of the scientific literature, scientific writing, bibliographic software, and proposal preparation. Prerequisites: Completion of the chemistry curriculum through the Spring semester of the sophomore year. Credit: 1 semester hour.

CHGN396. UNDERGRADUATE RESEARCH. 1-5 Semester Hr.
(I,II,S) Individual research project for freshman, sophomores or juniors under direction of a member of the departmental faculty. Prerequisites: None. Variable credit; 1 to 5 credit hours. Repeatable for credit. Seniors should take CHGN495 instead of CHGN396.

CHGN398. SPECIAL TOPICS IN CHEMISTRY. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

CHGN399. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: "Independent Study" form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

CHGN401. INORGANIC CHEMISTRY II. 3.0 Semester Hrs.
(I) The chemistry of the elements and several applications are related to inorganic chemistry are considered in this course. Particular concepts covered include experimental techniques, chemistry specific to groups of elements, catalysis and industrial processes, inorganic materials and nanotechnology, and other applications of inorganic chemistry. Prerequisite: CHGN341. 3 hours lecture; 3 semester hours.

CHGN403. INTRODUCTION TO ENVIRONMENTAL CHEMISTRY. 3.0 Semester Hrs.
Equivalent with CHGC505.
(II) Processes by which natural and anthropogenic chemicals interact, react and are transformed and redistributed in various environmental compartments. Air, soil and aqueous (fresh and saline surface and groundwaters) environments are covered, along with specialized environments such as waste treatment facilities and the upper atmosphere. Prerequisites: CHGN209 or CBEN210. 3 hours lecture; 3 semester hours.

CHGN406. INTRODUCTION TO GEOCHEMISTRY. 3.0 Semester Hrs.
A comprehensive introduction to the basic concepts and principles of geochemistry, coupled with a thorough overview of related principles of thermodynamics and kinetics. Topics covered include: chemical bonding, key chemical reactions, mineral chemistry, soils and nanogeochemistry, differentiation of the earth, controls on natural waters, stable and radiogenic isotopes and organic and biogeochemistry. Prerequisite: CHGN122 or CHGN125, GEGN101.

CHGN409. BIOLOGICAL INORGANIC CHEMISTRY. 3.0 Semester Hrs.
This course starts with a short introduction to inorganic chemistry and biology. The course then focuses on core bioinorganic chemistry topics, including metalloprotein structure and function; characterization of bioinorganic systems; metal assimilation, metabolism, and homeostasis; and metals in medicine. We also briefly cover special topics, such as metallo-endocrinology, extremophiles, biominalization, and supramolecular bioinorganic chemistry. We investigate recent advances in the field of bioinorganic chemistry, introduce many leading scientists in the field, and explore scientific literature. Students are assessed through two open-resource, take-home exams (midterm and final) covering course material. Students also explore a topic of their choice through a class presentation and a writing assignment. Students will benefit from having taken at least one of the following courses: organic chemistry, inorganic chemistry, or biochemistry.
CHGN410. SURFACE CHEMISTRY. 3.0 Semester Hrs.
Equivalent with MLGN510.
Introduction to colloid systems, capillarity, surface tension and contact angle, adsorption from solution, micelles and micro-emulsions, the solid/gas interface, surface analytical techniques, van der Waal forces, electrical properties and colloid stability, some specific colloid systems (clays, foams and emulsions). Students enrolled for graduate credit in MLGN510 must complete a special project. Prerequisite: CHGN209 or CBEN210.

CHGN411. APPLIED RADIOCHEMISTRY. 3.0 Semester Hrs.
This course is designed for those who have a budding interest in radiochemistry and its applications. A brief overview of radioactivity and general chemistry will be provided in the first three weeks of the course. Follow-on weeks will feature segments focusing on the radiochemistry in the nuclear fuel cycle, radioisotope production, nuclear forensics and the environment. Prerequisite: CHGN122 or CHGN125.

CHGN422. POLYMER CHEMISTRY LABORATORY. 1.0 Semester Hr.
I) Prerequisites: CHGN221, CHGN223. 3 hours lab; 1 semester hour.

CHGN428. BIOCHEMISTRY. 3.0 Semester Hrs.
Introductory study of the major molecules of biochemistry: amino acids, proteins, enzymes, nucleic acids, lipids, and saccharides—their structure, chemistry, biological function, and biosynthesis. Stresses bioenergetics and the cell as a biological unit of organization. Discussion of classical genetics, molecular genetics, and protein synthesis. Co-requisite: CHGN222.

CHGN429. BIOCHEMISTRY II. 3.0 Semester Hrs.
A continuation of CHGN428. Topics include: nucleotide synthesis; DNA repair, replication and recombination; transcription, translation and regulation; proteomics; lipid and amino acid synthesis; protein target and degradation; membranes; receptors and signal transduction. Prerequisite: CHGN428.

CHGN430. INTRODUCTION TO POLYMER SCIENCE. 3.0 Semester Hrs.
Equivalent with MLGN530,
I) An introduction to the chemistry and physics of macromolecules. Topics include the properties and statistics of polymer solutions, measurements of molecular weights, molecular weight distributions, properties of bulk polymers, mechanisms of polymer formation, and properties of thermosets and thermoplastics including elastomers. Pre requisite: CHGN222. 3 hour lecture, 3 semester hours.

CHGN431. INTRODUCTORY BIOCHEMISTRY LABORATORY. 2.0 Semester Hrs.
The link between the structure of a material and its properties is ubiquitous across all fields. Throughout the Biochemistry lab course, we will have the opportunity to explore both protein and nucleic acids through various techniques and analyses that probe the structure-property relationship of biomolecules that subsequently allows us to tap into molecular function. The selection of experiments is intentionally designed to provide exposure to a broad range of modern experimental strategies to enrich and solidify material covered within the CHGN428/429 sequence. Co-requisite: CHGN428.

CHGN441. THE CHEMISTRY AND BIOCHEMISTRY OF PHARMACEUTICALS. 3.0 Semester Hrs.
This course will examine a broad range of pharmaceuticals, including but not limited to controlled substances, treatments for cardiovascular, respiratory, and infectious diseases, as well as cannabinoids and performance-enhancing substances. The history, pharmacology, and, in some cases, the synthesis of these pharmaceuticals will be covered. Prerequisite: CHGN222, CHGN428.

CHGN450. SPECIAL TOPICS IN CHEMISTRY. 1-6 Semester Hrs.
Variable credit; 1 to 6 credit hours. Repeatable once. Prerequisite: none. 3 hours lecture, 3 semester hours.

CHGN451. APPLIED EUROPEAN TECHNOLOGY. 3.0 Semester Hrs.
The analysis of biological systems from the perspective of organic/inorganic and physical chemistry, including chemical reactions for the synthetic preparation of biomolecules and the chemistry behind different biotechnological developments and tools. A strong emphasis on the mechanistic basis of biochemical transformations is included. Strategies for directing pharmaceuticals or diagnostics to different subcellular locales will be presented. A survey of key advancements in the field of chemical biology will be drawn from the primary literature. Prerequisite: CHGN222, CHGN428.

CHGN462. MICROBIOLOGY. 3.0 Semester Hrs.
Equivalent with CHGN562.
II) This course will cover the basic fundamentals of microbiology, such as structure and function of prokaryotic versus eukaryotic cells; viruses; classification of microorganisms; microbial metabolism, energetics, genetics, growth and diversity, microbial interactions with plants, animals, and other microbes. Special focus will be on pathogenic bacteriology, virology, and parasitology including disease symptoms, transmission, and treatment. Prerequisite: none. 3 hours lecture, 3 semester hours.

CHGN475. COMPUTATIONAL CHEMISTRY. 3.0 Semester Hrs.
II) This class provides a survey of techniques of computational chemistry, including quantum mechanics (both Hartree-Fock and density functional approaches) and molecular dynamics. Emphasis is given to the integration of these techniques with experimental programs of molecular design and development. Prerequisites: CHGN351, CHGN401. 3 hours lecture; 3 semester hours.

CHGN490. CHEMISTRY FIELD SESSION. 6.0 Semester Hrs.
(S) (WI) Professional-level chemistry experience featuring modules including organic/polymer synthesis and characterization, inorganic nanomaterial investigations, computational chemistry, environmental chemical analysis, biochemistry and technical report writing. 6-week summer session; 6 semester hours. Prerequisite: CHGN323, CHGN341, and CHGN351.

CHGN495. UNDERGRADUATE RESEARCH. 1-5 Semester Hr.
(I, II, S) (WI) Individual research project under direction of a member of the Departmental faculty. Prerequisites: selection of a research topic and advisor, preparation and approval of a research proposal, completion of chemistry curriculum through the junior year. Variable credit; 1 to 5 credit hours. Repeatable for credit.

CHGN497. INTERNSHIP. 1-6 Semester Hr.
(I, II, S) (WI) Individual research project under direction of a member of the Departmental faculty. Prerequisites: completion of chemistry curriculum through the junior year. Variable credit; 1 to 6 credit hours.

CHGN498. SPECIAL TOPICS IN CHEMISTRY. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

CHGN499. INDEPENDENT STUDY. 0.5-6 Semester Hr.
(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: "Independent Study" form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.
CHGN502. ADVANCED INORGANIC CHEMISTRY. 3.0 Semester Hrs.
Detailed examination of concepts such as molecular symmetry, group theory, molecular orbital theory, ligand field theory, and crystal field theory. Additional topics include spectroscopy, inorganic reaction mechanisms, and organometallic chemistry.

CHGN503. ADV PHYSICAL CHEMISTRY I. 3.0 Semester Hrs.
(I) Quantum chemistry of classical systems. Principles of chemical thermodynamics. Statistical mechanics with statistical calculation of thermodynamic properties. Theories of chemical kinetics. 3 hours lecture; 3 semester hours. Prerequisite: none.

CHGN505. ADVANCED ORGANIC CHEMISTRY. 3.0 Semester Hrs.
Detailed discussion of the more important mechanisms of organic reaction. Structural effects and reactivity. The application of reaction mechanisms to synthesis and structure proof. Prerequisite: none. 3 hours lecture; 3 semester hours.

CHGN507. ADVANCED ANALYTICAL CHEMISTRY. 3.0 Semester Hrs.
(I) Review of fundamentals of analytical chemistry. Literature of analytical chemistry and statistical treatment of data. Manipulation of real substances; sampling, storage, decomposition or dissolution, and analysis. Detailed treatment of chemical equilibrium as related to precipitation, acid-base, complexation and redox titrations. Potentiometry and UV-visible absorption spectrophotometry. Prerequisite: none. 3 hours lecture; 3 semester hours.

CHGN508. ANALYTICAL SPECTROSCOPY. 3.0 Semester Hrs.
(II) Detailed study of classical and modern spectroscopic methods; emphasis on instrumentation and application to analytical chemistry problems. Topics include: UV-visible spectroscopy, infrared spectroscopy, fluorescence and phosphorescence, Raman spectroscopy, arc and spark emission spectroscopy, flame methods, nephelometry and turbidimetry, reflectance methods, Fourier transform methods in spectroscopy, photoacoustic spectroscopy, rapid-scanning spectroscopy. Prerequisite: none. 3 hours lecture; 3 semester hours. Offered alternate years.

CHGN509. BIOLOGICAL INORGANIC CHEMISTRY. 3.0 Semester Hrs.
This course starts with a short introduction to inorganic chemistry and biology. The course then focuses on core bioinorganic chemistry topics, including metalloprotein structure and function; characterization of bioinorganic systems; metal assimilation, metabolism, and homeostasis; and metals in medicine. We also briefly cover special topics, such as metallo-endocrinology, extremophiles, biomineralization, and supramolecular bioinorganic chemistry. We investigate recent advances in the field of bioinorganic chemistry, introduce many leading scientists in the field, and explore scientific literature. Students are assessed through two open-resource, take-home exams (midterm and final) covering course material. Students also explore a topic of their choice through a class presentation and a writing assignment. There are no formal prerequisites for the class; however, students will benefit from having taken at least one of the following courses: organic chemistry, inorganic chemistry, or biochemistry.

CHGN510. CHEMICAL SEPARATIONS. 3.0 Semester Hrs.
(II) Survey of separation methods, thermodynamics of phase equilibria, thermodynamics of liquid-liquid partitioning, various types of chromatography, ion exchange, electrophoresis, zone refining, use of inclusion compounds for separation, application of separation technology for determining physical constants, e.g., stability constants of complexes. Prerequisite: CHGN507. 3 hours lecture; 3 semester hours. Offered alternate years.

CHGN511. APPLIED RADIOCHEMISTRY. 3.0 Semester Hrs.
(II) The Applied Radiochemistry course is designed for those who have a budding interest radiochemistry and its applications. A brief overview of radioactivity and general chemistry will be provided in the first three weeks of the course. Follow-on weeks will feature segments focusing on the radiochemistry in the nuclear fuel cycle, radioisotope production, nuclear forensics and the environment. 3 hours lecture and discussion; 3 semester hours. Prerequisite: CHGN 122 or CHGN 125.

CHGN512. COLLOID AND SURFACE CHEMISTRY. 3.0 Semester Hrs.
Introduction to colloidal systems, capillarity, surface tension and contact angle, adsorption from solution, micelles and micro-emulsions, the solid/gas interface, surface analytical techniques, van der Waals forces, electrical properties and colloid stability, some specific colloid systems (clays, foams and emulsions) will be introduced.

CHGN515. CHEMICAL BONDING IN MATERIALS. 3.0 Semester Hrs.
(I) Detailed examination of chemical bonding theories and calculations and their applications to solids of interest to materials science. The relationship between a material's properties and the bonding of its atoms will be examined for a variety of materials. Includes an introduction to organic polymers. Computer programs will be used for calculating bonding parameters. Prerequisite: none. 3 hours lecture; 3 semester hours.

CHGN523. SOLID STATE CHEMISTRY. 3.0 Semester Hrs.
(I) Dependence of properties of solids on chemical bonding and structure; principles of crystal growth, crystal imperfections, reactions and diffusion in solids, and the theory of conductors and semiconductors. Prerequisite: none. 3 hours lecture; 3 semester hours. Offered alternate years.

CHGN536. ADVANCED POLYMER SYNTHESIS. 3.0 Semester Hrs.
(II) An advanced course in the synthesis of macromolecules. Various methods of polymerization will be discussed with an emphasis on the specifics concerning the syntheses of different classes of organic and inorganic polymers. 3 hours lecture, 3 semester hours Prerequisite: CHGN 430, CBEN 415, MLGN 530.

CHGN538. ORGANIC SEMICONDUCTORS: NEW TECHNOLOGIES FOR EMERGING APPLICATIONS. 3.0 Semester Hrs.
(II) Organic Light Emitting Diodes (OLEDs) is a display technology that can be found in many commercial products such as the smartphones and tablets. This technology was on the R&D bench-top just 10 years ago and has now reached high volume manufacturing. Other related technologies like organic photovoltaics (OPV) and organic thin film transistors (OTFT) are now on the heels of commercialization as well. This course will provide an overview on how this meteoric rise from bench-top to commercial products occurred as well as the design, synthesis and uses of conjugated organic small molecules, oligomers and polymers in applications such as OLEDs (for flat panel displays and lighting), OPV, OTFT, and sensors. Additional topics to be covered are factors governing the materials physical properties and structure-property relationship in electronic device applications. The prospect of using low cost printing techniques such as inkjet, screen, and gravure printing in the fabrication of roll-to-roll organic based devices will be discussed. Encapsulation, lifetime and reliability issues will also be presented. Prerequisites: Organic Chemistry 1 & 2 are encouraged. 3 hours lecture; 3 semester hours.
CHGN540. PROFESSIONAL SKILLS FOR CHEMICAL SCIENTISTS. 1.0 Semester Hr.
The goal of this course is to provide students a set of skills that are complementary to their core education. The contents of this course cover a broad range of topics that will provide the participants a perspective on careers in science and the skill sets necessary to be successful in each. These skills are in line with the latest recommendations of the American Chemical Society (ACS) and CSM educational goals. In particular, the 2013 ACS Presidential Commission Report on Graduate Education in the Chemical Sciences presents a platform for educational reform that includes a focus on multi-level (from general public to specialists) and multi-platform communication (formal and informal, written, oral), an understanding of the global chemical enterprise and the career possibilities within each, an understanding of networking and collaboration, etc. 1 hour lecture; 1 semester hour.

CHGN555. POLYMER AND COMPLEX FLUIDS COLLOQUIUM. 1.0 Semester Hr.
Equivalent with CBEN555, MLGN555, The Polymer and Complex Fluids Group at the Colorado School of Mines combines expertise in the areas of flow and field based transport, intelligent design and synthesis as well as nanomaterials and nanotechnology. A wide range of research tools employed by the group includes characterization using rheology, scattering, microscopy, microfluidics and separations, synthesis of novel macromolecules as well as theory and simulation involving molecular dynamics and Monte Carlo approaches. The course will provide a mechanism for collaboration between faculty and students in this research area by providing presentations on topics including the expertise of the group and unpublished, ongoing campus research. Prerequisites: none. 1 hour lecture; 1 semester hour. Repeatable for credit to a maximum of 3 hours.

CHGN560. GRADUATE SEMINAR, M.S.. 1.0 Semester Hr.
(I, II) Required for all candidates for the M.S. and Ph.D. degrees in chemistry and geochemistry. M.S. students must register for the course during each semester of residency. Ph.D. students must register each semester until a grade is received satisfying the prerequisites for CHGN660. Presentation of a graded non-thesis seminar and attendance at all departmental seminars are required. Prerequisite: Graduate student status. 1 semester hour.

CHGN580. STRUCTURE OF MATERIALS. 3.0 Semester Hrs.
(II) Application of X-ray diffraction techniques for crystal and molecular structure determination of minerals, inorganic and organometallic compounds. Topics include the heavy atom method, data collection by moving film techniques and by diffractometers, Fourier methods, interpretation of Patterson maps, refinement methods, direct methods. Prerequisite: none. 3 hours lecture; 3 semester hours. Offered alternate years.

CHGN581. ELECTROCHEMISTRY. 3.0 Semester Hrs.
(I) Introduction to theory and practice of electrochemistry. Electrode potentials, reversible and irreversible cells, activity concept. Interionic attraction theory, proton transfer theory of acids and bases, mechanisms and fates of electrode reactions. Prerequisite: none. 3 hours lecture; 3 semester hours. Offered alternate years.

CHGN583. PRINCIPLES AND APPLICATIONS OF SURFACE ANALYSIS TECHNIQUES. 3.0 Semester Hrs.
(II) Instrumental techniques for the characterization of surfaces of solid materials; Applications of such techniques to polymers, corrosion, metallurgy, adhesion science, microelectronics. Methods of analysis discussed: x-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), ion scattering spectroscopy (ISS), secondary ion mass spectrometry (SIMS), Rutherford backscattering (RBS), scanning and transmission electron microscopy (SEM, TEM), energy and wavelength dispersive x-ray analysis; principles of these methods, quantification, instrumentation, sample preparation. 3 hours lecture; 3 semester hours. Prerequisite: B.S. in Metallurgy, Chemistry, Chemical Engineering, Physics, or consent of instructor.

CHGN584. FUNDAMENTALS OF CATALYSIS. 3.0 Semester Hrs.
(II) The basic principles involved in the preparation, characterization, testing and theory of heterogeneous and homo geneous catalysts are discussed. Topics include chemisorption, adsorption isotherms, diffusion, surface kinetics, promoters, poisons, catalyst theory and design, acid base catalysis and soluble transition metal complexes. Examples of important industrial applications are given. Prerequisite: CHGN222. 3 hours lecture; 3 semester hours.

CHGN585. CHEMICAL KINETICS. 3.0 Semester Hrs.
(II) Study of kinetic phenomena in chemical systems. Attention devoted to various theoretical approaches. Prerequisite: none. 3 hours lecture; 3 semester hours. Offered alternate years.

CHGN598. SPECIAL TOPICS IN CHEMISTRY. 6.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once, but no more than twice for the same course content. Prerequisite: none. Variable credit: 0 to 6 credit hours. Repeatable for credit under different titles.

CHGN599. INDEPENDENT STUDY. 0.5-6 Semester Hr.
(I, II, S) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/ experience and maximums vary by department. Contact the Department for credit limits toward the degree.

CHGN625. MOLECULAR SIMULATION. 3.0 Semester Hrs.
Principles and practice of modern computer simulation techniques used to understand solids, liquids, and gases. Review of the statistical foundation of thermodynamics followed by indepth discussion of Monte Carlo and Molecular Dynamics techniques. Discussion of intermolecular potentials, extended ensembles, and mathematical algorithms used in molecular simulations. 3 hours lecture; 3 semester hours. Prerequisite: CBEN 509 or equivalent, and recommend CBEN 610 or equivalent.

CHGN660. GRADUATE SEMINAR, Ph.D.. 1.0 Semester Hr.
(I, II) Required of all candidates for the doctoral degree in chemistry or geochemistry. Students must register for this course each semester after completing CHGN560. Presentation of a graded nonthesis seminar and attendance at all departmental seminars are required. Prerequisite: CHGN560 or equivalent. 1 semester hour.

CHGN698. SPECIAL TOPICS IN CHEMISTRY. 6.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once, but no more than twice for the same course content. Prerequisite: none. Variable credit: 0 to 6 credit hours. Repeatable for credit under different titles.
CHGN699. INDEPENDENT STUDY. 0.5-6 Semester Hr.
(I, II, S) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/experience and maximums vary by department. Contact the Department for credit limits toward the degree.

CHGN707. GRADUATE THESIS / DISSERTATION RESEARCH CREDIT. 1-15 Semester Hr.
(I, II, S) Research credit hours required for completion of a Masters-level thesis or Doctoral dissertation. Research must be carried out under the direct supervision of the student's faculty advisor. Variable class and semester hours. Repeatable for credit.