ENERGY (ENGY)

ENGY200. INTRODUCTION TO ENERGY. 3.0 Semester Hrs.
Introduction to Energy. Survey of human-produced energy technologies including steam, hydro, fossil (petroleum, coal, and unconventional), geothermal, wind, solar, biofuels, nuclear, and fuel cells. Current and possible future energy transmission and efficiency. Evaluation of different energy sources in terms of a feasibility matrix of technical, economic, environmental, and political aspects. 3 hours lecture; 3 semester hours.

ENGY310. INTRO TO FOSSIL ENERGY. 3.0 Semester Hrs.
(I) Students will learn about conventional coal, oil, and gas energy sources across the full course of exploitation, from their geologic origin, through discovery, extraction, processing, marketing, and finally to their end-use in society. Students will be introduced to the key technical concepts of flow through rock, the geothermal temperature and pressure gradients, and structural statics as needed to understand the key technical challenges of mining, drilling, and production. Students will then be introduced to unconventional (emerging) fossil-based resources, noting the key drivers and hurdles associated with their development. Students will learn to quantify the societal cost and benefits of each fossil resource across the full course of exploitation and in a final project will propose or evaluate a national or global fossil energy strategy, supporting their arguments with quantitative technical analysis. 3 hours lecture; 3 semester hours.

ENGY320. INTRO TO RENEWABLE ENERGY. 3.0 Semester Hrs.
(I) Survey of renewable sources of energy. The basic science behind renewable forms of energy production, technologies for renewable energy storage, distribution, and utilization, production of alternative fuels, intermittency, natural resource utilization, efficiency and cost analysis and environmental impact. 3 hours lecture; 3 semester hours.

ENGY340. NUCLEAR ENERGY. 3.0 Semester Hrs.
(I) Survey of nuclear energy and the nuclear fuel cycle including the basic principles of nuclear fission and an introduction to basic nuclear reactor design and operation. Nuclear fuel, uranium resources, distribution, and fuel fabrication, conversion and breeding. Nuclear safety, nuclear waste, nuclear weapons and proliferation as well economic, environmental and political impacts of nuclear energy. 3 hours lecture; 3 semester hours.

ENGY350. GEOTHERMAL ENERGY. 3.0 Semester Hrs.
(I) Geothermal energy resources and their utilization, based on geoscience and engineering perspectives. Geoscience topics include world wide occurrences of resources and their classification, heat and mass transfer, geothermal reservoirs, hydrothermal geochemistry, exploration methods, and resource assessment. Engineering topics include thermodynamics of water, power cycles, electricity generation, drilling and well measurements, reservoir-surface engineering, and direct utilization. Economic and environmental considerations and case studies are also presented. 3 hours lecture; 3 semester hours.

ENGY399. INDEPENDENT STUDY. 0.5-6 Semester Hr.
Students can do individual research or special problem projects supervised by a faculty member. The student and instructor will agree on the subject matter, content, and credit hours.

ENGY499. INDEPENDENT STUDY. 0.5-6 Semester Hr.
Students can do individual research or special problem projects supervised by a faculty member. The student and instructor will agree on the subject matter, content, and credit hours.

ENGY501. ENERGY RESOURCES AND ELECTRIC POWER SYSTEMS. 3.0 Semester Hrs.
(I) This course will provide successful students a quantitative understanding of how fossil, renewable and nuclear energy resources are harnessed to electric power. A foundational underpinning will be the thermodynamics of energy conversion, using fundamental principles and language bridging physics, chemistry and engineering. Examples will be taken from both established and emerging technologies spanning solar, nuclear, wind fossil fuel and bioenergy conversion. Students will also learn how to analyze electricity generation, transmission, and grid-scale storage systems with a focus on the U.S. as a framework for analyzing other developing markets. 3 hours lecture; 3 semester hours.

ENGY502. ENERGY FOR TRANSPORTATION. 3.0 Semester Hrs.
(I) This course focuses on multiple aspects of current and proposed transportation technologies to analyze the challenges and opportunities of moving toward more sustainable transportation infrastructure. This course is designed to train students to develop analytical skills and to use computational tools for evaluating performance and environmental impacts of various vehicle and fueling technologies. Successful students will develop a basis for assessing energy resource requirements and environmental concerns within the context of technical performance, policy frameworks, and social perspectives. The course will include the following topics: travel demand and travel modes; transportation technologies; fossil-fuel and electric power plants and associated fuels; emissions (CO2 and pollutants) formation and impacts on air quality, climate, and human health; national/international transportation policy; and transportation planning. 3 hours lecture; 3 semester hours.

ENGY503. ENERGY SYSTEMS INTEGRATION AND EFFICIENCY. 3.0 Semester Hrs.
(II) This course will provide students with basic skills to analyze the operation and evolution of the electric grid and electricity utilization with a particular emphasis on trends toward increased renewable energy penetration. The course will develop students' analytical skills to evaluate how electricity generation, transmission, distribution and storage are managed and controlled. Successful students will gain a basic understanding of electromechanical machines for power conversion and AC power distribution as well as renewable energy sources and battery systems with DC storage. The course will introduce students to how efficient energy utilization and demand response management impact the electric grid performance and electricity markets. An emphasis on managing energy loads in buildings, the commercial sector, and energy-intensive manufacturing will expose students to system-level modeling tools that can assess how to manage power demands with transient power generation and market forces. The course will also address the integrated nature of energy systems with an emphasis on connections to water demands and on risks arising due to cybersecurity and resiliency threats facing the electric grid. 3 hours lecture; 3 semester hours.

ENGY599. INDEPENDENT STUDY. 0.5-6 Semester Hr.
Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/experience and maximums vary by department. Contact the Department for credit limits toward the degree.
ENGY691. NREL ROTATION: ANALYSIS OF INTEGRATED ENERGY SYSTEMS. 3.0 Semester Hrs.
(I) This course introduces graduate students enrolled in the Advanced Energy Systems Program to research opportunities, culture, and expectations in energy science and technology with a particular emphasis on systems and/or policy analysis. Students will work within directorates at NREL with an emphasis on systems modeling, analysis, and/or integration. This class will engage students in a semester-long research project in energy system analysis and prepare students for best practices with respect to research project and data management, literature reading, report writing, and presentation. 1 hour lecture; 6 hours lab; 3 semester hours.

ENGY692. NREL ROTATION: ENERGY SCIENCE & TECHNOLOGIES. 3.0 Semester Hrs.
(I) This course prepares graduate students enrolled in the Advanced Energy Systems Program in research practices, culture, and expectations in energy science and technology with a particular emphasis on science and engineering related to energy materials, processes, and/or systems. Students will work within directorates at NREL with an emphasis on science and/or technology. This class will engage students in a semester-long research project in energy science and/or technology. Students will also learn and practice journal publication and research poster best practices, research career path planning, and proposal funding strategies. 1 hour lecture; 6 hours lab; 3 semester hours.