ENGY200. INTRODUCTION TO ENERGY. 3.0 Semester Hrs.
Introduction to Energy. Survey of human-produced energy technologies including steam, hydro, fossil (petroleum, coal, and unconventionals), geothermal, wind, solar, biofuels, nuclear, and fuel cells. Current and possible future energy transmission and efficiency. Evaluation of different energy sources in terms of a feasibility matrix of technical, economic, environmental, and political aspects. 3 hours lecture; 3 semester hours.

ENGY310. INTRO TO FOSSIL ENERGY. 3.0 Semester Hrs.
(II) Students will learn about conventional coal, oil, and gas energy sources across the full course of exploitation, from their geologic origin, through discovery, extraction, processing, marketing, and finally to their end-use in society. Students will be introduced to the key technical concepts of flow through rock, the geothermal temperature and pressure gradients, hydrostatics, and structural statics as needed to understand the key technical challenges of mining, drilling, and production. Students will then be introduced to unconventional (emerging) fossil-based resources, noting the key drivers and hurdles associated with their development. Students will learn to quantify the societal cost and benefits of each fossil resource across the full course of exploitation and in a final project will propose or evaluate a national or global fossil energy strategy, supporting their arguments with quantitative technical analysis. 3 hours lecture; 3 semester hours.

ENGY320. INTRO TO RENEWABLE ENERGY. 3.0 Semester Hrs.
(I) Survey of renewable sources of energy. The basic science behind renewable forms of energy production, technologies for renewable energy storage, distribution, and utilization, production of alternative fuels, intermittency, natural resource utilization, efficiency and cost analysis and environmental impact. 3 hours lecture; 3 semester hours.

ENGY330. ENERGY ECONOMICS. 3.0 Semester Hrs.
Equivalent with EBGN330.
(I). Study of economic theories of optimal resource extraction, market power, market failure, regulation, deregulation, technological change and resource scarcity. Economic tools used to analyze OPEC energy mergers, natural gas price controls and deregulation, electric utility restructuring, energy taxes, environmental impacts of energy use, government R&D programs, and other energy topics. Prerequisites: EBGN201 or EBGN311. 3 hours lecture; 3 semester hours.

ENGY340. NUCLEAR ENERGY. 3.0 Semester Hrs.
(I) Survey of nuclear energy and the nuclear fuel cycle including the basic principles of nuclear fission and an introduction to basic nuclear reactor design and operation. Nuclear fuel, uranium resources, distribution, and fuel fabrication, conversion and breeding. Nuclear safety, nuclear waste, nuclear weapons and proliferation as well economic, environmental and political impacts of nuclear energy. 3 hours lecture; 3 semester hours.

ENGY350. GEOTHERMAL ENERGY. 3.0 Semester Hrs.
(I) Geothermal energy resources and their utilization, based on geoscience and engineering perspectives. Geoscience topics include world wide occurrences of resources and their classification, heat and mass transfer, geothermal reservoirs, hydrothermal geochemistry, exploration methods, and resource assessment. Engineering topics include thermodynamics of water, power cycles, electricity generation, drilling and well measurements, reservoir-surface engineering, and direct utilization. Economic and environmental considerations and case studies are also presented. 3 hours lecture; 3 semester hours.

ENGY490. ENERGY AND SOCIETY. 3.0 Semester Hrs.
Equivalent with LAIS490, MNGN490.
(II). A transdisciplinary capstone seminar that explores a spectrum of approaches to the understanding, planning, and implementation of energy production and use, including those typical of diverse private and public (national and international) corporations, organizations, states, and agencies. Aspects of global energy policy that may be considered include the historical, social, cultural, economic, ethical, political, and environmental aspects of energy together with comparative methodologies and assessments of diverse forms of energy development. Prerequisites: ENGY330/EBGN330 and one of either ENGY310, ENGY320, or ENGY340. 3 hours lecture/seminar; 3 semester hours.