EDNS151. DESIGN I. 3.0 Semester Hrs.
Equivalent with EPIC151.
(I, II, S) Design I teaches students how to solve open-ended problems in a hands-on manner using critical thinking and workplace skills. Students work in multidisciplinary teams to learn through doing, with emphasis on defining and diagnosing the problem through a holistic lens of technology, people and culture. Students follow a user-centered design methodology throughout the process, seeking to understand a problem from multiple perspectives before attempting to solve it. Students learn and apply specific skills throughout the semester, including: communication (written, oral, graphical), project management, concept visualization, critical thinking, effective teamwork, as well as building and iterating solutions. 2 hours lecture, 3 hours lab; 3 semester hours.

EDNS155. DESIGN I: GRAPHICS. 1.0 Semester Hr.
Equivalent with EPIC155.
(I, II, S) Design I: Graphics teaches students conceptualization and visualization skills, and how to represent ideas graphically, both by hand and using computer aided design (CAD). 1 hour lecture, 1 hour lab; 1 semester hour.

EDNS156. AUTOCADEMICS 1.0 Semester Hr.
(I) This course explores the two- and three-dimensional viewing and construction capabilities of AutoCAD. Students will learn to use AutoCAD for modeling (2D line drawing, 3D construction, Rendering, Part Assembly) and will develop techniques to improve speed and accuracy. The AutoCAD certification exam will not be offered as part of this course; however, the professor will provide instructions on accessing certification options, which generally have their own fees associated with them. 3 hours lab; 1 semester hour.

EDNS157. SOLIDWORKS BASICS (FOR CERTIFICATION). 1.0 Semester Hr.
(I, II) Students will become familiar and confident with Solidworks CAD program and be able to use most of the basic functions well, including Parts, Assemblies, and Drawing Layouts. The Associate-level certification exam will be offered at the end of the course, and while there are no guarantees for students becoming certified, students will have gained the necessary skills to try. 3 hours lab; 1 semester hour.

EDNS191. INTEGRATIVE DESIGN STUDIO IA. 4.0 Semester Hrs.
(I) (WI) Introduces students to human-centered design methodologies relative to open-ended problem solving using socially relevant challenges. Students in this first design studio course utilize a range of resources to integrate teamwork and communications with the use of computer software as tools to solve engineering problems. Computer applications emphasize information acquisition and processing based on knowing what new information is necessary to solve a problem and where to find the information efficiently. Teams analyze team dynamics through weekly team meetings and progress reports. The course emphasizes oral presentations and builds on written communications techniques introduced in Design I. 2 hours lecture, 3 hours lab; 3 semester hours.

EDNS192. INTEGRATIVE DESIGN STUDIO IB. 3.0 Semester Hrs.
(II) (WI) Students explore and participate in design activities as a member of a multi-year, multi-discipline client project, or work on an individual or smaller team project such as the design of experiential activities or community projects. Students are challenged to evaluate the history of science and engineering and its impact on social and political systems as a foundation for creating smarter designs. Prototyping skills are utilized to explore design functionality and potential alternatives. The course continues an emphasis on technical writing along with developing other communication formats. Prerequisite: EDNS191. 2 hours lecture; 3 hours lab; 3 semester hours.

EDNS198. SPECIAL TOPICS. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

EDNS199. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

EDNS200. COMMUNICATION. 3.0 Semester Hrs.
(I, II) (WI) This course introduces future engineers to why communication matters in engineering and involves collaborative effort to convey technical details in socially embedded and socially transformative contexts. The course approach provides exposure to how engineers communicate a range and depth of sociotechnical content to varied audiences, in writing, orally, visually, electronically, and via contextual listening, and shows students ways in which communication functions via diverse genres, to multiple audiences, and for different purposes. With structured opportunity for feedback and revision, students both study and produce communication artifacts that aim to meet or exceed criteria for what constitutes legitimate evidence and context within and beyond diverse engineering fields. 3 hours lecture; 3 semester hours.

EDNS205. PROGRAMMING CONCEPTS AND ENGINEERING ANALYSIS. 3.0 Semester Hrs.
(I, II) This course provides an introduction to techniques of scientific computation that are utilized for engineering analysis, with the software package MATLAB as the primary computational platform. The course focuses on methods data analysis and programming, along with numerical solutions to algebraic and differential equations. Engineering applications are used as examples throughout the course. 3 hours lecture; 3 semester hours.

EDNS251. DESIGN II. 3.0 Semester Hrs.
Equivalent with EPIC251.
(I, II, S) Design II builds on the design process introduced in Design I, which focuses on open-ended problem solving in which students integrate teamwork and communications with the use of computer software as tools to solve engineering problems. Computer applications emphasize information acquisition and processing based on knowing what new information is necessary to solve a problem and where to find the information efficiently. Teams analyze team dynamics through weekly team meetings and progress reports. The course emphasizes oral presentations and builds on written communications techniques introduced in Design I. 2 hours lecture, 3 hours lab; 3 semester hours.

Prerequisite: EDNS151, EDNS155, EDNS192, or HNRS115.
EDNS251. DESIGN II: GIS. 3.0 Semester Hrs.
Equivalent with EPIC261
(I, II, S) The Design II: GIS builds on the design process learned in Design I, which focuses on open-ended problem solving where students integrate teamwork and communication with the use of computer software as tools to solve engineering problems. Design II: GIS incorporates instruction and hands-on exercises in ArcGIS, a geographic information system software package, to enable students to capture, manage, analyze and display spatial data in maps and charts, to solve problems that depend on spatial analysis and orientation GIS for their design solutions. 2 hours lecture, 3 hours lab; 3 semester hours. Prerequisite: EDNS151, EDNS155, EDNS192, or HNRS115.

EDNS252. DESIGN II: AUTOCAD. 3.0 Semester Hrs.
Equivalent with EPIC262
(I) Design II: AutoCAD builds on the design process from Design I, which focuses on open-ended problem solving where students integrate teamwork and communication with the use of computer software as tools to solve engineering problems. Design II: AutoCAD incorporates instruction in 3-D AutoCAD computer-aided drawing of elemental designs (structure and mechanical) and geo-spatial designs and analyses to solve problems and publish outcomes. Students are introduced to digital terrain modeling and geo-referencing concepts using AutoCAD Civil3D and raster satellite imagery. Students studying Civil Engineering, Environmental Engineering, and Mining Engineering might consider registering for this course. 2 hours lecture, 3 hours lab; 3 semester hours. Prerequisite: EDNS151, EDNS155, EDNS192, or HNRS115.

EDNS253. DESIGN II: MATERIALS. 3.0 Semester Hrs.
Equivalent with EPIC271
(II) Design II: Materials builds on the design process introduced in Design I, which focuses on open-ended problem solving where students integrate teamwork and communication with the use of computer software as tools to solve engineering problems. The Design II: Materials curriculum matches the standard Design II deliverables but with a focus on Metallurgical and Materials Engineering (MME) based projects. Previous projects have utilized areas such as mechanical testing, bio-materials, semiconductors, ceramics, and non-destructive examination to address industrial, environmental, research and geopolitical open-ended problems. 2 hours lecture, 3 hours lab; 3 semester hours. Prerequisite: EDNS151, EDNS155, EDNS192, or HNRS115.

EDNS254. DESIGN II: GEOLOGY GIS. 3.0 Semester Hrs.
Equivalent with EPIC264
(WI) Design II: GIS builds on the design process introduced in Design I, which focuses on open-ended problem solving in which students integrate teamwork and communication with the use of computer software as tools to solve engineering problems. Computer applications emphasize information acquisition and processing based on knowing what new information is necessary to solve a problem and where to find the information efficiently. There are typically eight geology-based projects in the course, based on the needs of multiple outside clients. Many of the course deliverables are maps with associated data sets. Check with department for semester(s) offered. Prerequisite: EDNS151, EDNS155, EDNS192 or HNRS115.

EDNS255. DESIGN II: ENGINEERING PHYSICS. 3.0 Semester Hrs.
Equivalent with EPIC269
(I, II, S) Design II: Engineering Physics builds on the design process introduced in Design I, and focuses on open-ended problem solving in which students use teamwork to develop computer software as a tool to solve problems related to engineering physics. Students will learn basic programming skills and apply them to projects that relate to current research and applications of physics. Projects are selected to represent real-world physics problems wherein creative and critical thinking skills are necessary. These projects often involve computer-based optimization to obtain a solution. Students will learn how to analyze errors in data, and their effects on data interpretation and decision-making. Engineering Physics majors are encouraged to take this course in the sophomore year. It is open to other students on a space-available basis. 2 hours lecture, 3 hours lab; 3 semester hours. Prerequisite: EDNS151, EDNS155, EDNS192, or HNRS115.

EDNS256. INTEGRATIVE DESIGN STUDIO IIA. 3.0 Semester Hrs.
(I) Students work on an entrepreneurial or client project that may be a short-duration project or continuation of a multi-year, multi-discipline project with teams consisting of freshman to possibly senior students working on the same project, and typically student-lead designs. The course focuses on technical open-ended problem solving in which students integrate teamwork and communications with the use of computer software tools and inclusion of the greater social, political, cultural, and economic factors that ultimately determine if a design is successful. Case studies or other illustrative approaches are used to facilitate discussions on what constitutes effective or harmful designs in areas of earth, energy and environment. Information gathering and modeling are used to support problem assessment and solution exploration. Prerequisites: EDNS192 or HNRS115 or CSM192 or HASS100 and EDNS151. 3 hours lecture; 3 semester hours.

EDNS257. INTEGRATIVE DESIGN STUDIO IIB. 3.0 Semester Hrs.
(II) Students focus on significant contribution to a design project, building proficiency as they incorporate their core and distributed science studies, and begin to integrate their studies in distributed engineering as may be appropriate to the project. Communication of the design approach is emphasized. Prerequisite: EDNS291. 3 hours lecture; 3 semester hours.

EDNS258. SPECIAL TOPICS. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

EDNS259. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Variable credit; 1 to 6 credit hours. Repeatable for credit. Prerequisite: Independent Study form must be completed and submitted to the Registrar.
EDNS301. HUMAN-CENTERED PROBLEM DEFINITION. 3.0 Semester Hrs.
(I, II) This class will equip students with the knowledge, skills and attitudes needed to identify, define, and begin solving real problems for real people, within the socio-technical ambiguity that surrounds all engineering problems. The course will focus on problems faced in everyday life, by people from different backgrounds and in different circumstances, so that students will be able to rise to the occasion presented by future workplace challenges. By the end of this course, students will be able to recognize design problems around them, determine whether they are worth solving, and employ a suite of tools to create multiple solutions. The follow up course -- "Design for People" -- will enable students to take the best solutions to the prototype phase. 3 hours lecture; 3 semester hours.

EDNS315. ENGINEERING FOR SOCIAL AND ENVIRONMENTAL RESPONSIBILITY. 3.0 Semester Hrs.
(I, II) (WI) This course explores how engineers think about and practice environmental and social responsibility, and critically analyzes codes of ethics before moving to a deeper focus on macroethical topics with direct relevance to engineering practice, environmental sustainability, social and environmental justice, social entrepreneurship, corporate social responsibility, and engagement with the public. These macroethical issues are examined through a variety of historical and contemporary case studies and a broad range of technologies. Prerequisite: HASS100, and EDNS151 or EDNS192. 3 hours lecture; 3 semester hours.

EDNS375. ENGINEERING CULTURES. 3.0 Semester Hrs.
Equivalent with LAIS375,
This course seeks to improve students' abilities to understand and assess engineering problem solving from different cultural, political, and historical perspectives. An exploration, by comparison and contrast, of engineering cultures in such settings as 20th century United States, Japan, former Soviet Union and present day Russia, Europe, Southeast Asia, and Latin America. Prerequisite: HASS100. Corequisite: HASS200. 3 hours lecture; 3 semester hours.

EDNS391. INTEGRATIVE DESIGN STUDIO IIIA. 3.0 Semester Hrs.
(I) (WI) Design Practicum augments the engineering core and addresses content and depth that students may not have otherwise acquired through separate Engineering Core courses. This design studio is intended as preparation for the Design Practicum/Field Session studio EGGN392 and includes modules on technical engineering drawings, system simulation and optimization. Project management skills are emphasized. Prerequisites: EDNS292 or LAIS 200 and any EPIC 200 Level or MEGN200 or GPGN268, and EDNS200. 3 hours lecture; 3 semester hours.

EDNS392. INTEGRATIVE DESIGN STUDIO IIIB. 3.0 Semester Hrs.
(II) (WI) Students in Design Practicum incorporate instruction from their Engineering Core to drive technical feasibility assessment of a project for a client. This studio serves as the Field Session experience for students in the BSE program and places students in a professional practice experiential environment. Team and leadership skills are emphasized. This course also places strong emphasis on the economic and business aspects of a project, including development of a detailed techno-economic assessment. Prerequisites: EDNS391, PHGN200, and MATH225. 3 hours lecture; 3 semester hours.

EDNS398. SPECIAL TOPICS. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

EDNS399. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: Independent Study? form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

EDNS401. PROJECTS FOR PEOPLE. 3.0 Semester Hrs.
(I, II) Work with innovative organizations dedicated to community development to solve major engineering challenges. This course is open to juniors and seniors interested in engaging a challenging design problem and learning more about Human Centered Design (HCD). The course will be aimed at developing engineering solutions to real problems affecting real people in areas central to their lives. 3 hours lecture; 3 semester hours.

EDNS430. CORPORATE SOCIAL RESPONSIBILITY. 3.0 Semester Hrs.
Equivalent with LAIS430,
Businesses are largely responsible for creating the wealth upon which the well-being of society depends. As they create that wealth, their actions impact society, which is composed of a wide variety of stakeholders. In turn, society shapes the rules and expectations by which businesses must navigate their internal and external environments. This interaction between corporations and society (in its broadest sense) is the concern of Corporate Social Responsibility (CSR). This course explores the dimensions of that interaction from a multi-stakeholder perspective using case studies, guest speakers and field work. Prerequisite: HASS100. Corequisite: HASS200. 3 hours lecture; 3 semester hours.

EDNS475. ENGINEERING CULTURES IN THE DEVELOPING WORLD. 3.0 Semester Hrs.
Equivalent with LAIS475,
An investigation and assessment of engineering problem-solving in the developing world using historical and cultural cases. Countries to be included range across Africa, Asia, and Latin America. Prerequisite: HASS100. Corequisite: HASS200. 3 hours lecture; 3 semester hours.

EDNS477. ENGINEERING AND SUSTAINABLE COMMUNITY DEVELOPMENT. 3.0 Semester Hrs.
(I, II) This course is an introduction to the relationship between engineering and sustainable community development (SCD) from historical, political, ideological, ethical, cultural, and practical perspectives. Students will study and analyze different dimensions of community and sustainable development and the role that engineering might play in them. Also students will critically explore strengths and limitations of dominant methods in engineering problem solving, design, and research for working in SCD. Students will learn to research, describe, analyze and evaluate case studies in SCD and develop criteria for their evaluation. Prerequisite: HASS100. Corequisite: HASS200. 3 hours seminar; 3 semester hours.

EDNS478. ENGINEERING AND SOCIAL JUSTICE. 3.0 Semester Hrs.
Equivalent with LAIS478,
(II) This course offers students the opportunity to explore the relationships between engineering and social justice. The course begins with students? exploration of their own social locations, alliances and resistances to social justice through critical engagement of interdisciplinary readings that challenge engineering mindsets. Then the course helps students to understand what constitutes social justice in different areas of social life and the role that engineers and engineering might play in these. Finally, the course gives students an understanding of why and how engineering has been aligned and/or divergent from social justice issues and causes. Prerequisite: HASS100. Corequisite: HASS200. 3 hours lecture; 3 semester hours.
EDNS479. COMMUNITY-BASED RESEARCH. 3.0 Semester Hrs.
Equivalent with LAIS479.
Engineers and applied scientists face challenges that are profoundly socio-technical in nature, and communities are increasingly calling for greater participation in the decisions that affect them. Understanding the diverse perspectives of communities and being able to establish positive working relationships with their members is therefore crucial to the socially responsible practice of engineering and applied science. This course provides students with the conceptual and methodological tools to conduct community-based research. Students will learn ethnographic field methods and participatory research strategies, and critically assess the strengths and limitations of these through a final original research project. Prerequisite: HASS100. Co-requisite: HASS200.

EDNS480. ANTHROPOLOGY OF DEVELOPMENT. 3.0 Semester Hrs.
Equivalent with LAIS480.
Engineers and applied scientists face challenges that are profoundly socio-technical in nature, ranging from controversies surrounding new technologies of energy extraction that affect communities to the mercurial "social license to operate" in locations where technical systems impact people. Understanding the perspectives of communities and being able to establish positive working relationships with their members is therefore crucial to the socially responsible practice of engineering and applied science. This course provides students with the conceptual and methodological tools to engage communities in respectful and productive ways. Students will learn ethnographic field methods and participatory research strategies, and critically assess the strengths and limitations of these through a final original research project. Prerequisite: HASS200. Co-requisite: EDNS477 or HASS325.

EDNS491. SENIOR DESIGN I. 3.0 Semester Hrs.
Equivalent with EGGN491.
(I, II) (WI) This course is the first of a two-semester capstone course giving the student experience in the engineering design process. Realistic open-ended design problems are addressed for real world clients at the conceptual, engineering analysis, and the synthesis stages and include economic and ethical considerations necessary to arrive at a final design. Students are assigned to interdisciplinary teams and exposed to processes in the areas of design methodology, project management, communications, and work place issues. Strong emphasis is placed on this being a process course versus a project course. This is a writing-across-the-curriculum course where students' written and oral communication skills are strengthened. The design projects are chosen to develop student creativity, use of design methodology and application of prior course work paralleled by individual study and research. 2 hours lecture; 3 hours lab; 3 semester hours. Prerequisite: For BSME students concurrent enrollment or completion of MEGN481 and completion of Mechanical Field Session MEGN201; for BSEE completion of two of EENG391, EENG392, EENG393, and EENG394, and completion of Engineering Field Session, Electrical, EENG334; for BSCE students concurrent enrollment or completion of any one of CEEN443, CEEN445, CEEN440, or CEEN415 and completion of Engineering Field Session, Civil, CEEN 331; for BSEN completion of Engineering Field Session, Environmental, CEEN 330; for BSE students concurrent enrollment or completion of EDNS392; and for all other students completion of Field Session appropriate to the student's specialty and consent of instructor.

EDNS492. SENIOR DESIGN II. 3.0 Semester Hrs.
(I, II) (WI) This course is the second of a two-semester sequence to give the student experience in the engineering design process. Design integrity and performance are to be demonstrated by building a prototype or model, or producing a complete drawing and specification package, and performing pre-planned experimental tests, wherever feasible, to verify design compliance with client requirements. Prerequisite: EGGN491. 1 hour lecture; 6 hours lab; 3 semester hours.

EDNS498. SPECIAL TOPICS. 6.0 Semester Hrs.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

EDNS499. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: Independent Study form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

EDNS577. ADVANCED ENGINEERING AND SUSTAINABLE COMMUNITY DEVELOPMENT. 3.0 Semester Hrs.
Equivalent with LAIS577.
Analyzes the relationship between engineering and sustainable community development (SCD) from historical, political, ethical, cultural, and practical perspectives. Students will study and analyze different dimensions of sustainability, development, and "helping", and the role that engineering might play in each. Will include critical explorations of strengths and limitations of dominant methods in engineering problem solving, design and research for working in SCD. Through case-studies, students will analyze and evaluate projects in SCD and develop criteria for their evaluation. 3 hours lecture and discussion; 3 semester hours.

EDNS580. HUMANITARIAN ENGINEERING AND SCIENCE CAPSTONE PRACTICUM. 3.0 Semester Hrs.
(I, II, S) This course allows students to practice the concepts, theories and methods learned in HES courses with the goal of making relevant their academic training to real world problems. This practicum can be achieved through a number of possibilities approved by HES director, including supervision and/or shadowing in HES-related activities, engaging in a social enterprise where they do problem definition, impact gap analysis and layout a business canvas, and designing and carrying out a project or fieldwork of their own, etc. Prerequisite: EDNS570, EDNS479. 3 hours research; 3 semester hours.

EDNS590. RISKS IN HUMANITARIAN ENGINEERING AND SCIENCE. 3.0 Semester Hrs.
(I) This course provides students with opportunities learn about risk and ways of analyzing engineering and scientific projects in relation to risks, and to develop multiple mitigation steps. The students will learn tools to develop their own designs while also evaluating associated risks along multiple dimensions and searching out synergies. 3 hours lecture; 3 semester hours.

EDNS598. SPECIAL TOPICS IN ENGINEERING DESIGN & SOCIETY. 6.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once, but no more than twice for the same course content. Prerequisite: none. Variable credit: 0 to 6 credit hours. Repeatable for credit under different titles.
EDNS599. INDEPENDENT STUDY. 0.5-6 Semester Hr.
Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/experience and maximums vary by department. Contact the Department for credit limits toward the degree. Independent Study form must be completed and submitted to the Registrar.