MATHEMATICS (MATH)

MATH100. INTRODUCTORY TOPICS FOR CALCULUS. 3.0 Semester Hrs.
(S) An introduction and/or review of topics which are essential to the background of an undergraduate student at CSM. This course serves as a preparatory course for the Calculus curriculum and includes material from Algebra, Trigonometry, Mathematical Analysis, and Calculus. Topics include basic algebra and equation solving, solutions of inequalities, trigonometric functions and identities, functions of a single variable, continuity, and limits of functions. Does not apply toward undergraduate degree or GPA. 3 hours lecture; 3 semester hours.

MATH111. CALCULUS FOR SCIENTISTS AND ENGINEERS I. 4.0 Semester Hrs.
(I, II, S) First course in the calculus sequence, including elements of plane geometry. Functions, limits, continuity, derivatives and their application. Definite and indefinite integrals; Prerequisite: precalculus. 4 hours lecture; 4 semester hours. Approved for Colorado Guaranteed General Education transfer. Equivalency for GT-MA1.

MATH112. CALCULUS FOR SCIENTISTS AND ENGINEERS II. 4.0 Semester Hrs.
Equivalent with MATH122.
(I, II, S) Vectors, applications and techniques of integration, infinite series, and an introduction to multivariate functions and surfaces. Prerequisite: Grade of C- or better in MATH111. 4 hours lecture; 4 semester hours. Approved for Colorado Guaranteed General Education transfer. Equivalency for GT-MA1.

MATH113. CALCULUS FOR SCIENTISTS AND ENGINEERS II - SHORT FORM. 1.0 Semester Hr.
(I, II) This is a bridge course for entering freshmen and new transfer students to CSM who have either a score of 5 on the BC AP Calculus exam or who have taken an appropriate Calculus II course at another institution (determined by a departmental review of course materials). Two, three and n-dimensional space, vectors, curves and surfaces in 3-dimensional space, polar, cylindrical and spherical coordinates, and applications of these topics. Prerequisite: Placement by Mines Transfer Specialist or AMS Department recommendation. 1 hour lecture; 1 semester hour.

MATH122. CALCULUS FOR SCIENTISTS AND ENGINEERS II HONORS. 4.0 Semester Hrs.
Equivalent with MATH112.
(I, II) Same topics as those covered in MATH112 but with additional material and problems. Prerequisites: Grade of C- or better in MATH111. 4 hours lecture; 4 semester hours.

MATH198. SPECIAL TOPICS. 6.0 Semester Hrs.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

MATH199. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

MATH201. PROBABILITY AND STATISTICS FOR ENGINEERS. 3.0 Semester Hrs.
Equivalent with MATH323, (I,II,S) This course is an introduction to Probability and Statistics, including fundamentals of experimental design and data collection, the summary and display of data, elementary probability, propagation of error, discrete and continuous probability models, interval estimation, hypothesis testing, and linear regression with emphasis on applications to science and engineering. Prerequisites: MATH112, MATH122 or concurrent enrollment in MATH113. 3 hours lecture; 3 semester hours.

MATH212. CALCULUS FOR SCIENTISTS AND ENGINEERS III. 4.0 Semester Hrs.
(I, II, S) Multivariable calculus, including partial derivatives, multiple integrals, and vector calculus. Prerequisites: Grade of C- or better in MATH112 or MATH122 or Concurrent Enrollment in MATH113. 4 hours lecture; 4 semester hours. Approved for Colorado Guaranteed General Education transfer. Equivalency for GT-MA1.

MATH213. CALCULUS FOR SCIENTISTS AND ENGINEERS III - SHORT FORM. 1.0 Semester Hr.
(I, II) This is a bridge course for entering freshmen and new transfer students to CSM who have taken an appropriate Calculus III course at another institution (determined by a departmental review of course materials). Vector Calculus including line and surface integrals with applications to work and flux, Green's Theorem, Stokes' Theorem and the Divergence Theorem. 1 hour lecture; 1 semester hour.

MATH223. CALCULUS FOR SCIENTISTS AND ENGINEERS III HONORS. 4.0 Semester Hrs.
(II) Same topics as those covered in MATH213 but with additional material and problems. Prerequisite: (Grade of B- or better in MATH112 or MATH113 or MATH122) OR (concurrent enrollment in MATH113 for new students with pending AP or transfer credit for Calculus II). 4 hours lecture; 4 semester hours.

MATH224. CALCULUS FOR SCIENTISTS AND ENGINEERS III HONORS. 4.0 Semester Hrs.
(I, II) Early introduction of vectors, linear algebra, multivariable calculus. Vector fields, line and surface integrals. Prerequisite: (Grade of B- or better in MATH112 or MATH113 or MATH122) OR (concurrent enrollment in MATH113 for new students with pending AP or transfer credit for Calculus II). 4 hours lecture; 4 semester hours.

MATH225. DIFFERENTIAL EQUATIONS. 3.0 Semester Hrs.
(I, II, S) Classical techniques for first and higher order equations and systems of equations. Laplace transforms. Phase-plane and stability analysis of non-linear equations and systems. Applications from physics, mechanics, electrical engineering, and environmental sciences. Prerequisites: Grade of C- or better in MATH112 or MATH113 or MATH122 or Concurrent Enrollment in MATH113. 3 hours lecture; 3 semester hours.

MATH225. DIFFERENTIAL EQUATIONS HONORS. 4.0 Semester Hrs.
(I, II) Same topics as those covered in MATH225 but with additional material and problems. 3 hours lecture; 3 semester hours. Prerequisite: Grade of B- or better in MATH112 or MATH113 or MATH122 or Concurrent Enrollment in MATH113. 4 hours lecture; 4 semester hours.

MATH226. STATISTICAL METHODS. 3.0 Semester Hrs.
(I, II) Same topics as those covered in MATH225 but with additional material and problems. 3 hours lecture; 3 semester hours. Prerequisite: Grade of B- or better in MATH112 or MATH113 or MATH122 or Concurrent Enrollment in MATH113 for new students with pending AP or transfer credit for Calculus II).

MATH228. SPECIAL TOPICS. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.
MATH299. INDEPENDENT STUDY. 1-6 Semester Hrs.
(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

MATH300. FOUNDATIONS OF ADVANCED MATHEMATICS. 3.0 Semester Hrs.
(I) This course is an introduction to communication in mathematics. This writing intensive course provides a transition from the Calculus sequence to theoretical mathematics curriculum in CSM. Topics include logic and recursion, techniques of mathematical proofs, reading and writing proofs. Prerequisites: MATH112 or MATH122. 3 hours lecture; 3 semester hours.

MATH301. INTRODUCTION TO ANALYSIS. 3.0 Semester Hrs.
Equivalent with MATH401.
(I, II) This course is a first course in real analysis that lays out the context and motivation of analysis in terms of the transition from power series to those less predictable series. The course is taught from a historical perspective. It covers an introduction to the real numbers, sequences and series and their convergence, real-valued functions and their continuity and differentiability, sequences of functions and their pointwise and uniform convergence, and Riemann-Stieltjes integration theory. Prerequisite: MATH300. 3 hours lecture; 3 semester hours.

MATH307. INTRODUCTION TO SCIENTIFIC COMPUTING. 3.0 Semester Hrs.
Equivalent with CSCI407,MATH407.
(I, II, S) This course is designed to introduce scientific computing to scientists and engineers. Students in this course will be taught various numerical methods and programming techniques to solve basic scientific problems. Emphasis will be made on implementation of various numerical and approximation methods to efficiently simulate several applied mathematical models. Prerequisites: MATH213 or MATH223 or MATH224. Co-requisites: MATH225 or MATH235. 3 hours lecture; 3 semester hours.

MATH310. INTRODUCTION TO MATHEMATICAL MODELING. 3.0 Semester Hrs.
An introduction to modeling and communication in mathematics. A writing intensive course providing a transition from the core math sequence to the upper division AMS curriculum. Topics include a variety of mathematical and statistical modeling techniques. Students will formulate and solve applied problems and will present results orally and in writing. In addition, students will be introduced to the mathematics software that will be used in upper division courses. Prerequisite: MATH201, MATH225.

MATH331. MATHEMATICAL BIOLOGY. 3.0 Semester Hrs.
Equivalent with MATH433.
(I, II) This course will discuss methods for building and solving both continuous and discrete mathematical models. These methods will be applied to population dynamics, epidemic spread, pharmacokinetics and modeling of physiologic systems. Modern Control Theory will be introduced and used to model living systems. Some concepts related to self-organizing systems will be introduced. Prerequisites: MATH225 or MATH235 and MATH213 or MATH223 or MATH224. 3 hours lecture, 3 semester hours.

MATH332. LINEAR ALGEBRA. 3.0 Semester Hrs.
(I, II) Systems of linear equations, matrices, determinants and eigenvalues. Linear operators. Abstract vector spaces. Applications selected from linear programming, physics, graph theory, and other fields. Prerequisite: MATH213, MATH223 or MATH224. 3 hours lecture; 3 semester hours.

MATH334. INTRODUCTION TO PROBABILITY. 3.0 Semester Hrs.
(I) An introduction to the theory of probability essential for problems in science and engineering. Topics include axioms of probability, combinatorics, conditional probability and independence, discrete and continuous probability density functions, expectation, jointly distributed random variables, Central Limit Theorem, laws of large numbers. Prerequisite: MATH213, MATH223 or MATH224. 3 hours lecture, 3 semester hours.

MATH335. INTRODUCTION TO MATHEMATICAL STATISTICS. 3.0 Semester Hrs.
(II) An introduction to the theory of statistics essential for problems in science and engineering. Topics include sampling distributions, methods of point estimation, methods of interval estimation, significance testing for population means and variances and goodness of fit, linear regression, analysis of variance. Prerequisite: MATH334. 3 hours lecture, 3 semester hours.

MATH340. COOPERATIVE EDUCATION. 3.0 Semester Hrs.
(I, II, S) (WI) Supervised, full-time engineering-related employment for a continuous six-month period (or its equivalent) in which specific educational objectives are achieved. Prerequisite: Second semester sophomore status and a cumulative grade point average of at least 2.00. 0 to 3 semester hours. Cooperative Education credit does not count toward graduation except under special conditions. Repeatable.

MATH342. HONORS LINEAR ALGEBRA. 3.0 Semester Hrs.
(I, II) Same topics as those covered in MATH332 but with additional material and problems as well as a more rigorous presentation. Prerequisite: MATH213, MATH223 or MATH224. 3 hours lecture; 3 semester hours.

MATH348. ADVANCED ENGINEERING MATHEMATICS. 3.0 Semester Hrs.
(I, II, S) Introduction to partial differential equations, with applications to physical phenomena. Fourier series. Linear algebra, with emphasis on sets of simultaneous equations. This course cannot be used as a MATH elective by MCS or AMS majors. Prerequisite: MATH225 or MATH235 and MATH213 or MATH223 or MATH224. 3 hours lecture; 3 semester hours.

MATH398. SPECIAL TOPICS. 6.0 Semester Hrs.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

MATH399. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.
MATH408. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS. 3.0 Semester Hrs.
(I) This course is designed to introduce computational methods to scientists and engineers for developing differential equations based computer models. Students in this course will be taught various numerical methods and programming techniques to simulate systems of nonlinear ordinary differential equations. Emphasis will be on implementation of various numerical and approximation methods to efficiently simulate several systems of nonlinear differential equations. Prerequisite: MATH307. 3 hours lecture; 3 semester hours.

MATH424. INTRODUCTION TO APPLIED STATISTICS. 3.0 Semester Hrs.
(I) Linear regression, analysis of variance, and design of experiments, focusing on the construction of models and evaluation of their fit. Techniques covered will include stepwise and best subsets regression, variable transformations, and residual analysis. Emphasis will be placed on the analysis of data with statistical software. Prerequisites: MATH201 or MATH335 and MATH332 or MATH342. 3 hours lecture; 3 semester hours.

MATH432. SPATIAL STATISTICS. 3.0 Semester Hrs.
(I) Modeling and analysis of data observed in a 2- or 3-dimensional region. Random fields, variograms, covariances, stationarity, nonstationarity, kriging, simulation, Bayesian hierarchical models, spatial regression, SAR, CAR, QAR, and MA models, Geary/Moran indices, point processes, K-function, complete spatial randomness, homogeneous and inhomogeneous processes, marked point processes. Prerequisite: MATH335. Corequisite: MATH424. 3 hours lecture; 3 semester hours.

MATH436. ADVANCED STATISTICAL MODELING. 3.0 Semester Hrs.
(II) Modern methods for constructing and evaluating statistical models. Topics include generalized linear models, generalized additive models, hierarchical Bayes methods, and resampling methods. Time series models, including moving average, autoregressive, and ARIMA models, estimation and forecasting, confidence intervals. Prerequisites: MATH335 and MATH424. 3 hours lecture; 3 semester hours.

MATH437. MULTIVARIATE ANALYSIS. 3.0 Semester Hrs.
(II) Introduction to applied multivariate techniques for data analysis. Topics include principal components, cluster analysis, MANOVA and other methods based on the multivariate Gaussian distribution, discriminant analysis, classification with nearest neighbors. Prerequisites: MATH335 or MATH201 and MATH332 or MATH342. 3 hours lecture; 3 semester hours.

MATH438. STOCHASTIC MODELS. 3.0 Semester Hrs.
(II) An introduction to stochastic models applicable to problems in engineering, physical science, economics, and operations research. Markov chains in discrete and continuous time, Poisson processes, and topics in queuing, reliability, and renewal theory. Prerequisite: MATH334. 3 hours lecture; 3 semester hours.

MATH439. SURVIVAL ANALYSIS. 3.0 Semester Hrs.
(I) Basic theory and practice of survival analysis. Topics include survival and hazard functions, censoring and truncation, parametric and nonparametric inference, hypothesis testing, the proportional hazards model, model diagnostics. Prerequisite: MATH335. 3 hours lecture; 3 semester hours.

MATH440. PARALLEL SCIENTIFIC COMPUTING. 3.0 Semester Hrs.
Equivalent with CSCI440, (I) This course is designed to facilitate students’ learning of parallel programming techniques to efficiently simulate various complex processes modeled by mathematical equations using multiple and multi-core processors. Emphasis will be placed on implementation of various scientific computing algorithms in FORTRAN 90 and its variants using MPI and OpenMP. Prerequisites: MATH307 or CSCI407. 3 hours lecture; 3 semester hours.

MATH454. COMPLEX ANALYSIS. 3.0 Semester Hrs.
(II) The complex plane. Analytic functions, harmonic functions. Mapping by elementary functions. Complex integration, power series, calculus of residues. Conformal mapping. Prerequisite: MATH225 or MATH235 and MATH213 or MATH223 or MATH224. 3 hours lecture; 3 semester hours.

MATH455. PARTIAL DIFFERENTIAL EQUATIONS. 3.0 Semester Hrs.
(I, II) Linear partial differential equations, with emphasis on the classical second-order equations: wave equation, heat equation, Laplace’s equation. Separation of variables, Fourier methods, Sturm-Liouville problems. Prerequisites: MATH225 or MATH235 and MATH213 or MATH223 or MATH224. 3 hours lecture; 3 semester hours.

MATH457. INTEGRAL EQUATIONS. 3.0 Semester Hrs.
(I) This is an introductory course on the theory and applications of integral equations. Abel, Fredholm and Volterra equations. Fredholm theory: small kernels, separable kernels, iteration, connections with linear algebra and Sturm-Liouville problems. Applications to boundary-value problems for Laplace’s equation and other partial differential equations. Prerequisites: MATH332 or MATH342, and MATH455. 3 hours lecture; 3 semester hours.

MATH458. ABSTRACT ALGEBRA. 3.0 Semester Hrs.
(I) This course is an introduction to the concepts of contemporary abstract algebra and applications of those concepts in areas such as physics and chemistry. Topics include groups, subgroups, homomorphisms and isomorphisms, rings, integral domains and fields. Prerequisites: MATH300. 3 hours lecture; 3 semester hours.

MATH459. ASYMPTOTICS. 3.0 Semester Hrs.
Equivalent with MATH559, (I) Asymptotic methods are used to find approximate solutions to problems when exact solutions are unavailable or too complicated to be useful. A broad range of asymptotic methods is developed, covering algebraic problems, integrals and differential equations. Prerequisites: MATH213 and MATH225. 3 hours lecture; 3 semester hours.

MATH472. MATHEMATICAL AND COMPUTATIONAL NEUROSCIENCE. 3.0 Semester Hrs.
(II) This course will focus on mathematical and computational techniques applied to neuroscience. Topics will include nonlinear dynamics, hysteresis, the cable equation, and representative models such as Wilson-Cowan, Hodgkin-Huxley, and FitzHugh-Nagumo. Applications will be motivated by student interests. In addition to building basic skills in applied math, students will gain insight into how mathematical sciences can be used to model and solve problems in neuroscience; develop a variety of strategies (computational, theoretical, etc.) with which to approach novel mathematical situations; and hone skills for communicating mathematical ideas precisely and concisely in an interdisciplinary context. In addition, the strong computational component of this course will help students to develop computer programming skills and apply appropriate technological tools to solve mathematical problems. Prerequisite: MATH331. 3 hours lecture; 3 semester hours.
MATH482. STATISTICS PRACTICUM (CAPSTONE). 4.0 Semester Hrs.
This is the capstone course in the Statistics option. Students will apply statistical principles to data analysis through advanced work, leading to a written report and an oral presentation. Choice of project is arranged between the student and the individual faculty member who will serve as advisor. Prerequisite: MATH335, MATH424.

MATH484. MATHEMATICAL AND COMPUTATIONAL MODELING (CAPSTONE). 4.0 Semester Hrs.
This is the capstone course in the Computational and Applied Mathematics option. Students will apply computational and applied mathematics modeling techniques to solve complex problems in biological, engineering and physical systems. Mathematical methods and algorithms will be studied within both theoretical and computational contexts. The emphasis is on how to formulate, analyze and use nonlinear modeling to solve typical modern problems. Prerequisite: MATH331, MATH337, MATH455.

MATH491. UNDERGRADUATE RESEARCH. 1-3 Semester Hr.
(I) (WI) Individual investigation under the direction of a department faculty member. Written report required for credit. Variable - 1 to 3 semester hours. Repeatable for credit to a maximum of 12 hours.

MATH492. UNDERGRADUATE RESEARCH. 1-3 Semester Hr.
(II) (WI) Individual investigation under the direction of a department faculty member. Written report required for credit. Prerequisite: none. Variable - 1 to 3 semester hours. Repeatable for credit to a maximum of 12 hours.

MATH498. SPECIAL TOPICS. 1-6 Semester Hr.
(I) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

MATH499. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

MATH500. LINEAR VECTOR SPACES. 3.0 Semester Hrs.
(I) Finite dimensional vector spaces and subspaces: dimension, dual bases, annihilators. Linear transformations, matrices, projections, change of basis, similarity. Determinants, eigenvalues, multiplicity. Jordan form. Inner products and inner product spaces with orthogonality and completeness. Prerequisite: MATH301, MATH332. 3 hours lecture; 1 to 6 credit hours. Repeatable for credit.

MATH501. APPLIED ANALYSIS. 3.0 Semester Hrs.
(I) Fundamental theory and tools of applied analysis. Students in this course will be introduced to Banach, Hilbert, and Sobolev spaces; bounded and unbounded operators defined on such infinite dimensional spaces; and associated properties. These concepts will be applied to understand the properties of differential and integral operators occurring in mathematical models that govern various biological, physical and engineering processes. Prerequisites: MATH301 or equivalent. 3 hours lecture; 3 semester hours.

MATH502. REAL AND ABSTRACT ANALYSIS. 3.0 Semester Hrs.
(I) Normed space R, open and closed sets. Lebesgue measure, measurable sets and functions. Lebesgue integral and convergence theorems. Repeated integration and integration by substitution. Lp spaces, Banach and Hilbert spaces. Weak derivatives and Sobolev spaces. Weak solutions of two-point boundary value problems. Prerequisites: MATH301 or equivalent. 3 hours lecture; 3 semester hours.

MATH503. FUNCTIONAL ANALYSIS. 3.0 Semester Hrs.

MATH506. COMPLEX ANALYSIS II. 3.0 Semester Hrs.
(II) Analytic functions. Conformal mappings and applications. Analytic continuation. Schlicht functions. Approximation theorems in the complex domain. Taught every other year. Prerequisite: MATH454. 3 hours lecture; 3 semester hours.

MATH510. ORDINARY DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS. 3.0 Semester Hrs.
(I) Topics to be covered: basic existence and uniqueness theory, systems of equations, stability, differential inequalities, Poincare-Bendixon theory, linearization. Other topics from: Hamiltonian systems, periodic and almost periodic systems, integral manifolds, Lyapunov functions, bifurcations, homoclinic points and chaos theory. Offered every even year. Prerequisite: (MATH225 or MATH235) and (MATH332 or MATH342). 3 hours lecture; 3 semester hours.

MATH514. APPLIED MATHEMATICS I. 3.0 Semester Hrs.
The major theme in this course is various non-numerical techniques for dealing with partial differential equations which arise in science and engineering problems. Topics include transform techniques, Green's functions and partial differential equations. Stress is on applications to boundary value problems and wave theory. Prerequisite: MATH455 or equivalent.

MATH515. APPLIED MATHEMATICS II. 3.0 Semester Hrs.
Topics include integral equations, applied complex variables, an introduction to asymptotics, linear spaces and the calculus of variations. Stress is on applications to boundary value problems and wave theory, with additional applications to engineering and physical problems. Prerequisite: MATH514.

MATH530. STATISTICAL METHODS I. 3.0 Semester Hrs.
(I) Introduction to probability, random variables, and discrete and continuous probability models. Elementary simulation. Data summarization and analysis. Confidence intervals and hypothesis testing for means and variances. Chi square tests. Distribution-free techniques and regression analysis. Prerequisite: MATH213 or equivalent.

MATH531. STATISTICAL METHODS II. 3.0 Semester Hrs.
(II) Continuation of MATH530. Multiple regression and trend surface analysis. Analysis of variance. Experimental design (Latin squares, factorial designs, confounding, fractional replication, etc.) Nonparametric analysis of variance. Topics selected from multivariate analysis, sequential analysis or time series analysis. Prerequisite: MATH201 or MATH530 or MATH535. 3 hours lecture; 3 semester hours.
MATH532. SPATIAL STATISTICS. 3.0 Semester Hrs.
(I) Modeling and analysis of data observed on a 2 or 3-dimensional surface. Random fields, variograms, covariances, stationarity, nonstationarity, kriging, simulation, Bayesian hierarchical models, spatial regression, SAR, CAR, QAR, and MA models, Geary/Moran indices, point processes, K-function, complete spatial randomness, homogeneous and inhomogeneous processes, marked point processes, spatial-temporal modeling. Course is offered every other year on even years. Prerequisites: MATH424 or MATH531. 3 hours lecture; 3 semester hours.

MATH534. MATHEMATICAL STATISTICS I. 3.0 Semester Hrs.
(I) The basics of probability, discrete and continuous probability distributions, sampling distributions, order statistics, convergence in probability and in distribution, and basic limit theorems, including the central limit theorem, are covered. Prerequisite: none. 3 hours lecture; 3 semester hours.

MATH535. MATHEMATICAL STATISTICS II. 3.0 Semester Hrs.
(II) The basics of hypothesis testing using likelihood ratios, point and interval estimation, consistency, efficiency, sufficient statistics, and some nonparametric methods are presented. Prerequisite: MATH534 or equivalent. 3 hours lecture; 3 semester hours.

MATH536. ADVANCED STATISTICAL MODELING. 3.0 Semester Hrs.
(II) Modern extensions of the standard linear model for analyzing data. Topics include generalized linear models, generalized additive models, mixed effects models, and resampling methods. Offered every two years on odd years. 3 hours lecture; 3 semester hours. Prerequisite: MATH335, MATH424.

MATH537. MULTIVARIATE ANALYSIS. 3.0 Semester Hrs.
(II) Introduction to applied multivariate representations of data for use in data analysis. Topics include introduction to multivariate distributions; methods for data reduction, such as principal components; hierarchical and model-based clustering methods; factor analysis; canonical correlation analysis; multidimensional scaling; and multivariate hypothesis testing. Prerequisites: MATH 530 and MATH 332 or MATH 500. 3 hours lecture; 3 semester hours.

MATH538. STOCHASTIC MODELS. 3.0 Semester Hrs.
(II) An introduction to the mathematical principles of stochastic processes. Discrete- and continuous-time Markov processes, Poisson processes, Brownian motion. Offered every two years on even years. 3 hours lecture; 3 semester hours.

MATH539. SURVIVAL ANALYSIS. 3.0 Semester Hrs.
(I) Basic theory and practice of survival analysis. Topics include survival and hazard functions, censoring and truncation, parametric and nonparametric inference, the proportional hazards model, model diagnostics. Offered on odd years. Prerequisite: MATH335, MATH535. 3 hours lecture; 3 semester hours.

MATH540. PARALLEL SCIENTIFIC COMPUTING. 3.0 Semester Hrs.
(II) This course is designed to facilitate students’ learning of parallel programming techniques to efficiently simulate various complex processes modeled by mathematical equations using multiple and multicore processors. Emphasis will be placed on the implementation of various scientific computing algorithms in FORTRAN/C/C++ using MPI and OpenMP. Prerequisite: MATH307. 3 hours lecture; 3 semester hours.

MATH542. SIMULATION. 3.0 Semester Hrs.
(I) Advanced study of simulation techniques, random number, and variate generation. Monte Carlo techniques, simulation languages, simulation experimental design, variance reduction, and other methods of increasing efficiency, practice on actual problems. 3 hours lecture; 3 semester hours. Prerequisite: CSCI262 (or equivalent), MATH201 (or MATH 424 or MATH530 or equivalent).

MATH544. ADVANCED COMPUTER GRAPHICS. 3.0 Semester Hrs.
Equivalent with CSCI544.
This is an advanced computer graphics course in which students will learn a variety of mathematical and algorithmic techniques that can be used to solve fundamental problems in computer graphics. Topics include global illumination, GPU programming, geometry acquisition and processing, point based graphics and non-photorealistic rendering. Students will learn about modern rendering and geometric modeling techniques by reading and discussing research papers and implementing one or more of the algorithms described in the literature.

MATH547. SCIENTIFIC VISUALIZATION. 3.0 Semester Hrs.
Equivalent with CSCI547.
Scientific visualization uses computer graphics to create visual images which aid in understanding of complex, often massive numerical representation of scientific concepts or results. The main focus of this course is on techniques applicable to spatial data such as scalar, vector and tensor fields. Topics include volume rendering, texture based methods for vector and tensor field visualization, and scalar and vector field topology. Students will learn about modern visualization techniques by reading and discussing research papers and implementing one of the algorithms described in the literature.

MATH550. NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS. 3.0 Semester Hrs.
(II) Numerical methods for solving partial differential equations. Explicit and implicit finite difference methods; stability, convergence, and consistency. Alternating direction implicit (ADI) methods. Weighted residual and finite element methods. Prerequisite: MATH225 or MATH235, and MATH332 or MATH342. 3 hours lecture; 3 semester hours.

MATH551. COMPUTATIONAL LINEAR ALGEBRA. 3.0 Semester Hrs.
(II) Numerical analysis of algorithms for solving linear systems of equations, least squares methods, the symmetric eigenproblem, singular value decomposition, conjugate gradient iteration. Modification of algorithms to fit the architecture. Error analysis, existing software packages. 3 hours lecture; 3 semester hours. Prerequisite: MATH332, MATH 307.

MATH556. MODELING WITH SYMBOLIC SOFTWARE. 3.0 Semester Hrs.
(I) Case studies of various models from mathematics, the sciences and engineering through the use of the symbolic software package MATHEMATICA. Based on hands-on projects dealing with contemporary topics such as number theory, discrete mathematics, complex analysis, special functions, classical and quantum mechanics, relativity, dynamical systems, chaos and fractals, solitons, wavelets, chemical reactions, population dynamics, pollution models, electrical circuits, signal processing, optimization, control theory, and industrial mathematics. The course is designed for graduate students and scientists interested in modeling and using symbolic software as a programming language and a research tool. It is taught in a computer laboratory. Prerequisites: none. 3 hours lecture; 3 semester hours.
MATH557. INTEGRAL EQUATIONS. 3.0 Semester Hrs.
(I) This is an introductory course on the theory and applications of integral equations. Abel, Fredholm and Volterra equations. Fredholm theory: small kernels, separable kernels, iteration, connections with linear algebra and Sturm-Liouville problems. Applications to boundary-value problems for Laplace's equation and other partial differential equations. Offered even years. Prerequisite: MATH332 or MATH342 and MATH455. 3 hours lecture; 3 semester hours.

MATH559. ASYMPTOTICS. 3.0 Semester Hrs.
Equivalent with MATH459,
(I) Exact methods for solving mathematical problems are not always available: approximate methods must be developed. Often, problems involve small parameters, and this can be exploited so as to derive approximations; these are known as asymptotic approximations. Many techniques for constructing asymptotic approximations have been devised. The course develops such approximations for algebraic problems, the evaluation of integrals, and the solutions of differential equations. Emphasis is placed on effective methods and, where possible, rigorous analysis. Prerequisites: Calculus and ordinary differential equations. 3 hours lecture; 3 semester hours.

MATH560. INTRODUCTION TO KEY STATISTICAL LEARNING METHODS I. 3.0 Semester Hrs.
Part one of a two-course series introducing statistical learning methods with a focus on conceptual understanding and practical applications. Methods covered will include Introduction to Statistical Learning, Linear Regression, Classification, Resampling Methods, Basis Expansions, Regularization, Model Assessment and Selection.

MATH561. INTRODUCTION TO KEY STATISTICAL LEARNING METHODS II. 3.0 Semester Hrs.
(I) Part two of a two course series introducing statistical learning methods with a focus on conceptual understanding and practical applications. Methods covered will include Non-linear Models, Tree-based Methods, Support Vector Machines, Neural Networks, Unsupervised Learning. Prerequisite: MATH560.

MATH572. MATHEMATICAL AND COMPUTATIONAL NEUROSCIENCE. 3.0 Semester Hrs.
(II) This course will focus on mathematical and computational techniques applied to neuroscience. Topics will include nonlinear dynamics, hysteresis, the cable equation, and representative models such as Wilson-Cowan, Hodgkin-Huxley, and FitzHugh-Nagumo. Applications will be motivated by student interests. In addition to building basic skills in applied math, students will gain insight into how mathematical sciences can be used to model and solve problems in neuroscience; develop a variety of strategies (computational, theoretical, etc.) with which to approach novel mathematical situations; and hone skills for communicating mathematical ideas precisely and concisely in an interdisciplinary context. In addition, the strong computational component of this course will help students to develop computer programming skills and apply appropriate technological tools to solve mathematical problems. Prerequisite: MATH331. 3 hours lecture; 3 semester hours.

MATH574. THEORY OF CRYPTOGRAPHY. 3.0 Semester Hrs.
Equivalent with CSCI574,
Students will draw upon current research results to design, implement and analyze their own computer security or other related cryptography projects. The requisite mathematical background, including relevant aspects of number theory and mathematical statistics, will be covered in lecture. Students will be expected to review current literature from prominent researchers in cryptography and to present their findings to the class. Particular focus will be given to the application of various techniques to real-life situations. The course will also cover the following aspects of cryptography: symmetric and asymmetric encryption, computational number theory, quantum encryption, RSA and discrete log systems, SHA, steganography, chaotic and pseudo-random sequences, message authentication, digital signatures, key distribution and key management, and block ciphers. Prerequisites: CSCI262 plus undergraduate-level knowledge of statistics and discrete mathematics. 3 hours lecture, 3 semester hours.

MATH582. STATISTICS PRACTICUM. 3.0 Semester Hrs.
(II) This is the capstone course in the Statistics Option. The main objective is to apply statistical knowledge and skills to a data analysis problem, which will vary by semester. Students will gain experience in problem-solving; working in a team; presentation skills (both orally and written); and thinking independently. Prerequisites: MATH 201 or 530 and MATH 424 or 531. 3 hours lecture and discussion; 3 semester hours.

MATH589. APPLIED MATHEMATICS AND STATISTICS TEACHING SEMINAR. 1.0 Semester Hr.
(I) An introduction to teaching issues and techniques within the AMS department. Weekly, discussion-based seminars will cover practical issues such as lesson planning, grading, and test writing. Issues specific to the AMS core courses will be included. 1 hour lecture; 1.0 semester hour.

MATH598. SPECIAL TOPICS. 6.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once, but no more than twice for the same course content. Prerequisite: none. Variable credit: 0 to 6 credit hours. Repeatable for credit under different titles.

MATH599. INDEPENDENT STUDY. 0.5-6 Semester Hrs.
(I, II, S) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/ experience and maximums vary by department. Contact the Department for credit limits toward the degree.

MATH610. ADVANCED TOPICS IN DIFFERENTIAL EQUATIONS. 3.0 Semester Hrs.
(II) Topics from current research in ordinary and/or partial differential equations; for example, dynamical systems, advanced asymptotic analysis, nonlinear wave propagation, solitons. Prerequisite: none. 3 hours lecture; 3 semester hours.

MATH614. ADVANCED TOPICS IN APPLIED MATHEMATICS. 3.0 Semester Hrs.
(I) Topics from current literature in applied mathematics; for example, wavelets and their applications, calculus of variations, advanced applied functional analysis, control theory. Prerequisite: none. 3 hours lecture; 3 semester hours.
MATH616. INTRODUCTION TO MULTI-DIMENSIONAL SEISMIC INVERSION. 3.0 Semester Hrs.
(II) Introduction to high frequency inversion techniques. Emphasis on the application of this theory to produce a reflector map of the earth’s interior and estimates of changes in earth parameters across those reflectors from data gathered in response to sources at the surface or in the interior of the earth. Extensions to elastic media are discussed, as well. Includes high frequency modeling of the propagation of acoustic and elastic waves. Prerequisites: partial differential equations, wave equation in the time or frequency domain, complex function theory, contour integration. Some knowledge of wave propagation: reflection, refraction, diffraction. 3 hours lecture; 3 semester hours.

MATH650. ADVANCED TOPICS IN NUMERICAL ANALYSIS. 3.0 Semester Hrs.
(II) Topics from the current literature in numerical analysis and/or computational mathematics; for example, advanced finite element method, sparse matrix algorithms, applications of approximation theory, software for initial value ODE’s, numerical methods for integral equations. 3 hours lecture; 3 semester hours. Prerequisite: Consent of Instructor.

MATH691. GRADUATE SEMINAR. 1.0 Semester Hr.
(I) Presentation of latest research results by guest lecturers, staff, and advanced students. Prerequisite: none. 1 hour seminar; 1 semester hour. Repeatable for credit to a maximum of 12 hours.

MATH692. GRADUATE SEMINAR. 1.0 Semester Hr.
Equivalent with CSCI692.
(II) Presentation of latest research results by guest lecturers, staff, and advanced students. Prerequisite: none. 1 hour seminar; 1 semester hour. Repeatable for credit to a maximum of 12 hours.

MATH693. WAVE PHENOMENA SEMINAR. 1.0 Semester Hr.
(I, II) Students will probe a range of current methodologies and issues in seismic data processing, with emphasis on underlying assumptions, implications of these assumptions, and implications that would follow from use of alternative assumptions. Such analysis should provide seed topics for ongoing and subsequent research. Topic areas include: Statistics estimation and compensation, deconvolution, multiple suppression, suppression of other noises, wavelet estimation, imaging and inversion, extraction of stratigraphic and lithologic information, and correlation of surface and borehole seismic data with well log data. Prerequisite: none. 1 hour seminar; 1 semester hour.

MATH698. SPECIAL TOPICS. 6.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once, but no more than twice for the same course content. Prerequisite: none. Variable credit: 0 to 6 credit hours. Repeatable for credit under different titles.

MATH699. INDEPENDENT STUDY. 0.5-6 Semester Hr.
(I, II, S) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: **Independent Study** form must be completed and submitted to the Registrar. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/experience and maximums vary by department. Contact the Department for credit limits toward the degree.

MATH707. GRADUATE THESIS / DISSERTATION RESEARCH CREDIT. 1-15 Semester Hr.
(I, II, S) GRADUATE THESIS/DISSERTATION RESEARCH CREDIT Research credit hours required for completion of a Masters-level thesis or Doctoral dissertation. Research must be carried out under the direct supervision of the student's faculty advisor. Variable class and semester hours. Repeatable for credit.