MECHANICAL ENGINEERING (MEGN)

MEGN200. INTRODUCTION TO MECHANICAL ENGINEERING: PROGRAMMING AND HARDWARE INTERFACE. 3.0 Semester Hrs.
Equivalent with LAIS200.
This course introduces programming skills using Matlab as a means to collect and analyze data and utilizes Arduinos as a platform for prototyping circuits and designs. This course reinforces the engineering design process through problem definition and identifying constraints and criteria, encouraging multiple solutions, and introducing analysis in design through prototyping. Prerequisite: EDNS151 or EDNS155 or HNRS105 or HNRS115, CSC1101, CSC1102.

MEGN201. INTRODUCTION TO MECHANICAL ENGINEERING: DESIGN & FABRICATION. 3.0 Semester Hrs.
(I, II, S) This course reinforces basic drawing skills from Cornerstone Design, introduces SolidWorks tools to advance modeling skills, introduces machine shop skills (including safety and use of mill, lathe and CNC) and introduces GD&T practices important in fabrication and manufacturing, and prob-stats relevant to manufacturing. 3 hours lecture; 3 semester hours. Prerequisite: EDNS151 or EDNS155.

MEGN212. INTRODUCTION TO SOLID MECHANICS. 3.0 Semester Hrs.
Equivalent with MEGN312.
This course introduces students to the principles of Solid Mechanics. Upon completion, students will be able to apply Solid Mechanics theories to analyze and design machine elements and structures using isotropic materials. The skills and knowledge learned in this course form the required foundation for Intro to Finite Element Analysis, Advanced Mechanics of Material, Machine Design and other advanced topics in engineering curricula. Practically, it enables students to solve real-world mechanical behavior problems that involve structural materials. This courses places an early focus on ensuring students have mastered the creation of free body diagrams given a mechanical system, then moves on to introduce and reinforce learning of stress and strain transformations, and failure theories. In practicing this knowledge, students will be able to analyze and design machine elements and structures of homogenous and heterogeneous geometries under axial, torsional, bending, transverse shear, internal pressure loads, and non-uniform loads. Students will be able to quantitatively communicate the outcomes. May not also receive credit for CEEN311. Prerequisite: CEEN241 (C- or better).

MEGN298. SPECIAL TOPICS. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

MEGN299. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) Individual research or special project supervised by a faculty member, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: “Independent Study” form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

MEGN300. INSTRUMENTATION & AUTOMATION. 3.0 Semester Hrs.
(I, II) This course will explore instrumentation and automation of electro-mechanical systems. Students will utilize LabView and electro-mechanical instrumentation to solve advanced engineering problems. Class activities and projects will highlight the utility of LabView for real-time instrumentation and control. 2 hours lecture; 1 hour other; 3 semester hours. Prerequisite: MEGN200, MEGN201.

MEGN301. MECHANICAL INTEGRATION & DESIGN. 2.0 Semester Hrs.
(I, II) Students will utilize the engineering design process and knowledge in systems level design to produce a mechanical product/process. Students will reverse engineer a product/process to emphasize the steps in the design process. Students will select a longer course project, which is intended to reinforce engineering skills from other courses. The project topics would parallel one of the four research disciplines in ME, and students would be able to choose a topic pathway that emphasizes opportunities for mechanical engineering graduates. Prerequisites: MEGN200, MEGN201, and MEGN300. 1 hour lecture, 1 hour other; 2 semester hours.

MEGN315. DYNAMICS. 3.0 Semester Hrs.
This course will cover particle kinematics (including 2-D motion in x-y coordinates, normal-tangential coordinates, & polar coordinates), rigid body kinematics (including relative velocities and accelerations), rigid body kinetics (including the equation of motion, work and energy, linear impulse-momentum, & angular momentum), and introduction to vibrations. Prerequisite: CEEN241 (C- or better) and MATH225 (C- or better). Co-requisite: MATH307 (only required for Mechanical Engineering Majors).

MEGN324. INTRODUCTION TO FINITE ELEMENT ANALYSIS. 3.0 Semester Hrs.
This course aims to teach basic proficiency with Finite Element Analysis (FEA), which is the most widely used computer aided engineering tool in industry, academia, and government. Fundamentals of FEA theory are introduced, but the majority of the course is spent learning practical skills with commercial FEA software. Students will work interactively with the instructor and with their peers to complete hands-on FEA examples based primarily on problems in structural mechanics. Applications of FEA for heat conduction, natural frequency analysis, and design optimization are covered briefly. The course will conclude with a mini project on which students use FEA skills for engineering analysis and design. The importance of verification and validation (V&V) for critical evaluation of FEA predictions is emphasized, and students will make frequent use of statics and solid mechanics principles to corroborate their FEA results. Prerequisite: MEGN212 (C- or better) or CEEN311 (C- or better).

MEGN330. INTRODUCTION TO BIOMECHANICAL ENGINEERING. 3.0 Semester Hrs.
(I) The application of mechanical engineering principles and techniques to the human body presents many unique challenges. The discipline of Biomedical Engineering (more specifically, Biomechanical Engineering) has evolved over the past 50 years to address these challenges. Biomechanical Engineering includes such areas as biomechanics, biomaterials, bioinstrumentation, medical imaging, and rehabilitation. This course is intended to provide an introduction to, and overview of, Biomechanical Engineering and to prepare the student for more advanced Biomechanical coursework. At the end of the semester, students should have a working knowledge of the special considerations necessary to apply various mechanical engineering principles to the human body. 3 hours lecture; 3 semester hours. Prerequisite: CEEN311 and PHGN200. Co-requisite: MEGN315.
MEGN340. COOPERATIVE EDUCATION. 3.0 Semester Hrs.
(I,II,S) Supervised, full-time engineering related employment for a continuous six-month period in which specific educational objectives are achieved. Students must meet with the Department Head prior to enrolling to clarify the educational objectives for their individual Co-op program. Prerequisites: Second semester sophomore status and a cumulative grade-point average of at least 2.00. 3 semester hours credit will be granted once toward degree requirements. Credit earned in MEGN340, Cooperative Education, may be used as free elective credit hours if, in the judgment of the Department Head, the required term paper adequately documents the fact that the work experience entailed high-quality application of engineering principles and practice. Applying the credits as free electives requires the student to submit a Declaration of Intent to Request Approval to Apply Co-op Credit toward Graduation Requirements form obtained from the Career Center to the Department Head.

MEGN351. FLUID MECHANICS. 3.0 Semester Hrs.
This course will cover principles of fluid properties, fluid statics, control-volume analysis, Bernoulli equation, differential analysis and Navier-Stokes equations, dimensional analysis, internal flow, external flow, open-channel flow, and turbomachinery. May not also receive credit for CEEN310 or PEGN251. Prerequisite: CEEN241 (C- or better) or MNGN317 (C- or better).

MEGN361. THERMODYNAMICS I. 3.0 Semester Hrs.
This course is a comprehensive treatment of thermodynamics from a mechanical engineering point of view. Topics include: Thermodynamic properties of substances inclusive of phase diagrams, equations of state, internal energy, enthalpy, entropy, and ideal gases; principles of conservation of mass and energy for steady-state and transient analyses; First and Second Law of thermodynamics, heat engines, and thermodynamic efficiencies; Application of fundamental principles with an emphasis on refrigeration and power cycles. May not also receive credit for CBEN210. Prerequisite: MATH213 (C- or better).

MEGN381. MANUFACTURING PROCESSES. 3.0 Semester Hrs.
Equivalent with MEGN380.
Manufacturing Processes is a survey course, that introduces a wide variety of traditional and advanced manufacturing processes with emphasis on process selection and hands-on experiences. Students are expected to have basic knowledge in material science, basic machining and GD&T before entering the class. Throughout the course students analyze the relationships between material properties, process variables and product functionality. Students design and evaluate processes for identifying value while eliminating waste using learned skill-sets including lean methodologies, six-sigma and statistical process control. Quality, cost, standards and ethics related to manufacturing are discussed throughout the semester. Prerequisite: MEGN201 and MTGN202.

MEGN391. AUTOMOTIVE DESIGN: SAE COLLEGIATE DESIGN SERIES (FORMULA SAE). 1.0 Semester Hr.
This course introduces students to automotive design and fabrication. Students will design, fabricate, test, and analyze a formula style race car for the Formula SAE Collegiate Design Series international competition. Provide engineering students an opportunity to develop engineering skills beyond the classroom in a team oriented, competitive, and hands-on environment. Students will learn about a broad range of automobile design topics to include vehicle dynamics, propulsion, chassis design, electrical systems and aerodynamic devices. Both theoretical and hands-on skills will be exercised. Additionally, students will learn basic mechanical drawing, analysis and fabrication skills. Special emphasis will be placed on workplace safety, teamwork and peer leadership. Finally, students will gain experience in program management to include budgeting, resource management, scheduling and solving real world open-ended problems. Prerequisite: MEGN200.

MEGN398. SPECIAL TOPICS IN MECHANICAL ENGINEERING. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

MEGN399. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) Individual research or special problem projects supervised by a faculty member, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: "Independent Study" form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

MEGN408. INTRODUCTION TO SPACE EXPLORATION. 1.0 Semester Hr.
(I, II) Overview of extraterrestrial applications of science and engineering by covering all facets of human and robotic space exploration, including its history, current status, and future opportunities in the aerospace and planetary science fields. Subtopics include: the space environment, space transportation systems, destinations (Low-Earth orbit, Moon, Mars, asteroids, other planets), current research, missions, and projects, the international and commercial perspectives, and discussion of potential career opportunities. This seminarstyle class is taught by CSM faculty, engineers and scientists from space agencies and research organizations, aerospace industry experts, and visionaries and entrepreneurs of the private space commerce sector. 1 lecture hour; 1 semester hour.

MEGN412. ADVANCED MECHANICS OF MATERIALS. 3.0 Semester Hrs.
This Advanced Mechanics of Materials course builds upon the learning outcomes of the pre-requisite Mechanics of Materials (Solid Mechanics) course to teach students the fundamentals of elastic deformations. Introduction to Theory of Elasticity and to Fracture Mechanics is realized through theory development, application examples, and numerical solutions. Knowledge from this course will enable students to work on variety of engineering applications in Mechanical, Materials, Aerospace, Civil and related engineering fields. Major covered topics include: vector and tensor calculus, stress and strain, stress functions, elastic constitutive equations, yield theories, numerical implementation techniques, and an introduction to applications including fracture mechanics. Prerequisite: MEGN212 (C- or better) or CEEN311 (C- or better).
MEGN414. MECHANICS OF COMPOSITE MATERIALS. 3.0 Semester Hrs.
Introductory course on the mechanics of fiber-reinforced composite materials. The focus of the course is on the determination of stress and strain in a fiber-reinforced composite material with an emphasis on analysis, design, failure by strength-based criteria, and fracture of composites. Anisotropic materials are discussed from a general perspective then the theory is specialized to the analysis of fiber-reinforced materials. Both thermal and hygroscopic sources of strain are introduced. Classical laminated plate theory is next developed, and design of laminated composite structures is introduced. The analysis of helically reinforced composite tubes concludes the course. Prerequisite: MEGN212 (C- or better).

MEGN416. ENGINEERING VIBRATION. 3.0 Semester Hrs.
This course introduces linear theory of mechanical vibrations as applied to single- and multi-degree-of-freedom systems. Specifically, students learn to analyze and measure free and forced vibrations of spring-mass-damper systems in response to different types of loading including harmonic, impulse, and general transient loading. Force balance and energy methods are introduced as means to create models of vibrating mechanical components. Ultimately, students learn to apply these theories to design vibration isolators and dampers for machines subject to translational and rotational vibrations, including machines with rotating unbalances and two or more vibrating masses. Prerequisite: MEGN315 (C- or better).

MEGN430. MUSCULOSKELETAL BIOMECHANICS. 3.0 Semester Hrs.
This course is intended to provide mechanical engineering students with a second course in musculoskeletal biomechanics. At the end of the semester, students should have in-depth knowledge and understanding necessary to apply mechanical engineering principles such as statics, dynamics, and mechanics of materials to the human body. The course will focus on the biomechanics of injury since understanding injury will require developing an understanding of normal biomechanics. 3 hours lecture; 3 semester hours. Prerequisite: MEGN330 (C- or better).

MEGN435. MODELING AND SIMULATION OF HUMAN MOVEMENT. 3.0 Semester Hrs.
Introduction to modeling and simulation in biomechanics. The course includes a synthesis of musculoskeletal properties, interactions with the environment, and computational optimization to construct detailed computer models and simulations of human movement. Prerequisite: MEGN315, MEGN330.

MEGN436. COMPUTATIONAL BIOMECHANICS. 3.0 Semester Hrs.
Computational Biomechanics provides an introduction to the application of computer simulation to solve fundamental problems in biomechanics and bioengineering. Musculoskeletal biomechanics, joint kinematics, medical image reconstruction, hard and soft tissue modeling, and medical device design are considered in the context of a semester-long project to develop and evaluate an artificial knee implant. Leading commercial software tools are introduced with hands-on exercises. An emphasis is placed on understanding the limitations of the computer model as a predictive tool and the need for rigorous verification and validation of all modeling tasks. Clinical application of biomechanical modeling tools is highlighted and impact on patient quality of life is discussed. Prerequisite: MEGN324, MEGN330.
MEGN469. FUEL CELL SCIENCE AND TECHNOLOGY. 3.0 Semester Hrs.
Equivalent with CBEN469, MTGN469,
(I) Investigate fundamentals of fuel-cell operation and electrochemistry from a chemical-thermodynamics and materials- science perspective. Review types of fuel cells, fuel-processing requirements and approaches, and fuel-cell system integration. Examine current topics in fuel-cell science and technology. Fabricate and test operational fuel cells in the Colorado Fuel Cell Center. Prerequisites: MEGN361 or CBEN357 or MTGN351. 3 hours lecture; 3 semester hours.

MEGN471. HEAT TRANSFER. 3.0 Semester Hrs.
(I, II) Engineering approach to conduction, convection, and radiation, including steady-state conduction, nonsteady-state conduction, internal heat generation conduction in one, two, and three dimensions, and combined conduction and convection. Free and forced convection including laminar and turbulent flow, internal and external flow. Radiation of black and grey surfaces, shape factors and electrical equivalence. Prerequisite: MEGN351 (C- or better), MEGN361 (C- or better), and MATH307. 3 hours lecture; 3 semester hours.

MEGN481. MACHINE DESIGN. 3.0 Semester Hrs.
(I, II) In this course, students develop their knowledge of machine components and materials for the purpose of effective and efficient mechanical design. Emphasis is placed on developing analytical methods and tools that aid the decision making process. The course focuses on determination of stress, strain, and deflection for static, static multiaxial, impact, dynamic, and dynamic multiaxial loading. Students will learn about fatigue failure in mechanical design and calculate how long mechanical components are expected to last. Specific machine components covered include shafts, springs, gears, fasteners, and bearings. 3 hours lecture; 3 semester hours. Prerequisite: MEGN315 (C- or better), MEGN324 (C- or better).

MEGN485. MANUFACTURING OPTIMIZATION WITH NETWORK MODELS. 3.0 Semester Hrs.
Equivalent with EBGN456,
(I) We examine network flow models that arise in manufacturing, energy, mining, transportation and logistics: minimum cost flow models in transportation, shortest path problems in assigning inspection effort on a manufacturing line, and maximum flow models to allocate machine-hours to jobs. We also discuss an algorithm or two applicable to each problem class. Computer use for modeling (in a language such as AMPL) and solving (with software such as CPLEX) these optimization problems is introduced. Prerequisites: MATH111. 3 hours lecture; 3 semester hours.

MEGN486. LINEAR OPTIMIZATION. 3.0 Semester Hrs.
(I) This course addresses the formulation of linear programming models, linear programs in two dimensions, standard form, the Simplex method, duality theory, complementary slackness conditions, sensitivity analysis, and multi-objective programming. Applications of linear programming models include, but are not limited to, the areas of manufacturing, energy, mining, transportation and logistics, and the military. Computer use for modeling (in a language such as AMPL) and solving (with software such as CPLEX) these optimization problems is introduced. Offered every other year. Prerequisite: MATH332 or EBGN509. 3 hours lecture; 3 semester hours.

MEGN487. NONLINEAR OPTIMIZATION. 3.0 Semester Hrs.
Equivalent with MEGN587,
(I) This course addresses both unconstrained and constrained nonlinear model formulation and corresponding algorithms (e.g., Gradient Search and Newton’s Method, and Lagrange Multiplier Methods and Reduced Gradient Algorithms, respectively). Applications of state-of-the-art hardware and software will emphasize solving real-world engineering problems in areas such as manufacturing, energy, mining, transportation and logistics, and the military. Computer use for modeling (in a language such as AMPL) and solving (with an algorithm such as MINOS) these optimization problems is introduced. Offered every other year. Prerequisite: MATH111. 3 hours lecture; 3 semester hours.

MEGN488. INTEGER OPTIMIZATION. 3.0 Semester Hrs.
Equivalent with MEGN588,
(I) This course addresses the formulation of integer programming models, the branch-and-bound algorithm, total unimodularity and the ease with which these models are solved, and then suggest methods to increase tractability, including cuts, strong formulations, and decomposition techniques, e.g., Lagrangian relaxation, Benders decomposition. Applications include manufacturing, energy, mining, transportation and logistics, and the military. Computer use for modeling (in a language such as AMPL) and solving (with software such as CPLEX) these optimization problems is introduced. Offered every other year. Prerequisite: MATH111. 3 hours lecture; 3 semester hours.

MEGN499. SPECIAL TOPICS IN MECHANICAL ENGINEERING. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

MEGN499. INDEPENDENT STUDY. 1-6 Semester Hr.
Individual research or special problem projects supervised by a faculty member, when a student and instructor agree on a subject matter, content, and credit hours. Note that MEGN499 does not count as an MEGN Technical Elective, though the course does count as a Free Elective. Prerequisite: Independent Study form must be completed and submitted to the Registrar.

MEGN501. ADVANCED ENGINEERING MEASUREMENTS. 3.0 Semester Hrs.
Equivalent with EGGN501,
Introduction to the fundamentals of measurements within the context of engineering systems. Topics that are covered include: errors and error analysis, modeling of measurement systems, basic electronics, noise and noise reduction, and data acquisition systems. Prerequisite: EGGN250, EENG281 or equivalent, and MATH201 or equivalent, Graduate student status.

MEGN502. ADVANCED ENGINEERING ANALYSIS. 3.0 Semester Hrs.
(I) Introduce advanced mathematical and numerical methods used to solve engineering problems. Analytic methods include series solutions, special functions, Sturm-Liouville theory, separation of variables, and integral transforms. Numerical methods for initial and boundary value problems include boundary, domain, and mixed methods, finite difference approaches for elliptic, parabolic, and hyperbolic equations, Crank-Nicolson methods, and strategies for nonlinear problems. The approaches are applied to solve typical engineering problems. Prerequisite: This is an introductory graduate class. The student must have a solid understanding of linear algebra, calculus, ordinary differential equations, and Fourier theory. 3 hours lecture.
MEGN503. GRADUATE SEMINAR. 0.0 Semester Hrs.
(I, II) This is a seminar forum for graduate students to present their research projects, critique others’ presentations, understand the breadth of engineering projects both within their specialty area and across the Division, hear from leaders of industry about contemporary engineering as well as socio-economical and marketing issues facing today’s competitive global environment. In order to improve communication skills, each student is required to present a seminar in this course before his/her graduation from the Mechanical Engineering graduate program. Prerequisite: Graduate standing. 1 hour per week; 0 semester hours. Course is repeatable, but no coursework credit is awarded.

MEGN510. SOLID MECHANICS OF MATERIALS. 3.0 Semester Hrs.
(I) Introduction to the algebra of vectors and tensors; coordinate transformations; general theories of stress and strain; principal stresses and strains; octahedral stresses; Hooke’s Law introduction to the mathematical theory of elasticity and to energy methods; failure theories for yield and fracture. Prerequisite: CEEN311 or equivalent, MATH225 or equivalent. 3 hours lecture; 3 semester hours.

MEGN511. FATIGUE AND FRACTURE. 3.0 Semester Hrs.
Equivalent with MTGN545.
(I) Basic fracture mechanics as applied to engineering materials, S-N curves, the Goodman diagram, stress concentrations, residual stress effects, effect of material properties on mechanisms of crack propagation. Prerequisite: none. 3 hours lecture; 3 semester hours. Fall semesters, odd numbered years.

MEGN512. ADVANCED ENGINEERING VIBRATION. 3.0 Semester Hrs.
Vibration theory as applied to single- and multi-degree-of freedom systems. Free and forced vibrations to different types of loading—harmonic, impulse, periodic and general. Natural frequencies. Role of Damping. Importance of resonance. Modal superposition method. Prerequisite: MEGN315, 3 hours lecture; 3 semester hours.

MEGN513. KINETIC PHENOMENA IN MATERIALS. 3.0 Semester Hrs.
Equivalent with MLGN511.
(I) Linear irreversible thermodynamics, dorce-flux couplings, diffusion, crystalline materials, amorphous materials, defect kinetics in crystalline materials, interface kinetics, morphological evolution of interfaces, nucleation theory, crystal growth, coarsening phenomena and grain growth. Prerequisites: MATH225: Differential equations (or equivalent), MLGN504/MTGN555/CBEN509: Thermodynamics (or its equivalent).

MEGN514. CONTINUUM MECHANICS. 3.0 Semester Hrs.
(I) This is a graduate course covering fundamentals of continuum mechanics and constitutive modeling. The goal of the course is to provide graduate students interested in fluid and solid mechanics with the foundation necessary to review and write papers in the field. Students will also gain experience interpreting, formulating, deriving, and implementing three-dimensional constitutive laws. The course explores six subjects: 1. Mathematical Preliminaries of Continuum Mechanics (Vectors, Tensors, Indicial Notation, Tensor Properties and Operations, Coordinate Transformations) 2. Stress (Traction, Invariants, Principal Values) 3. Motion and Deformation (Deformation Rates, Geometric Measures, Strain Tensors, Linearized Displacement Gradients) 4. Balance Laws (Conservation of Mass, Momentum, Energy) 5. Ideal Constitutive Relations (Frictionless & Linearly Viscous Fluids, Elasticity) 6. Constitutive Modeling (Formulation, Derivation, Implementation, Programming). 3 hours lecture, 3 semester hours.

MEGN515. COMPUTATIONAL MECHANICS. 3.0 Semester Hrs.
(I) A graduate course in computational mechanics with an emphasis on studying the major numerical techniques used to solve problems that arise in mechanics and some related topical areas. Variational methods are applied throughout as a general approach in the development of many of these computational techniques. A wide range of problems are addressed in one- and two- dimensions which include linear and nonlinear elastic and elastoplastic steady state mechanics problems. Computational algorithms for time dependent problems such as transient dynamics and viscoplasticity are also addressed. In the latter part of the course an introduction to computational methods employing boundary integral equations, and particle methods for solving the mechanical behavior of multi-body systems are also given. Note all the software used in this course is written in MATLAB which has become a widely acceptable engineering programming tool. 3 lecture hours, 3 semester hours. Prerequisite: MEGN502.

MEGN517. INELASTIC CONSTITUTIVE RELATIONS. 3.0 Semester Hrs.
(II) This is a graduate course on inelastic constitutive relations of solid materials. The goal of the course is to provide students working in solid mechanics and metallurgy with a foundation in theory and models of inelastic material behaviors. The behaviors we cover include plasticity, thermoelasticity, nonlinear elasticity, and phase transformations. We dive in at several length scales - crystal mechanics and phenomenological thermodynamic internal variable theory. We also discuss ties between models and state of the art experimental mechanics, including in-situ diffraction. We will cover both theory and numerical implementation strategies for the topics. Thus, students will gain experience interpreting, formulating, deriving, and implementing three-dimensional constitutive laws and crystal mechanics models. We will introduce many topics rather than focusing on a few such that students have a foot-in to dive deeper on their own, as they will do in the project. Prerequisites: MEGN514. 3 hours lecture, 3 semester hours.

MEGN520. BOUNDARY ELEMENT METHODS. 3.0 Semester Hrs.
(II) Development of the fundamental theory of the boundary element method with applications in elasticity, heat transfer, diffusion, and wave propagation. Derivation of indirect and direct boundary integral equations. Introduction to other Green’s function based methods of analysis. Computational experiments in primarily two dimensions. Prerequisite: MEGN502. 3 hours lecture; 3 semester hours Spring Semester, odd numbered years.

MEGN521. INTRODUCTION TO DISCRETE ELEMENT METHODS (DEMS). 3.0 Semester Hrs.
(I) Review of particle/rigid body dynamics, numerical DEM solution of equations of motion for a system of particles/rigid bodies, linear and nonlinear contact and impact laws dynamics, applications of DEM in mechanical engineering, materials processing and geo-mechanics. Prerequisites: CEEN311, MEGN315 and some scientific programming experience in C/C++ or Fortran. 3 hours lecture; 3 semester hours Spring semester of even numbered years.
MEGN531. PROSTHETIC AND IMPLANT ENGINEERING. 3.0 Semester Hrs.
Prosthetics and implants for the musculoskeletal and other systems of the human body are becoming increasingly sophisticated. From simple joint replacements to myoelectric limb replacements and functional electrical stimulation, the engineering opportunities continue to expand. This course builds on musculoskeletal biomechanics and other BELS courses to provide engineering students with an introduction to prosthetics and implants for the musculoskeletal system. At the end of the semester, students should have a working knowledge of the challenges and special considerations necessary to apply engineering principles to augmentation or replacement in the musculoskeletal system. Prerequisite: MEGN430.

MEGN532. EXPERIMENTAL METHODS IN BIOMECHANICS. 3.0 Semester Hrs.
(I) Introduction to experimental methods in biomechanical research. Topics include experimental design, hypothesis testing, motion capture, kinematic models, ground reaction force data collection, electromyography, inverse dynamics calculations, and applications. Strong emphasis on hands-on data collection and technical presentation of results. The course will culminate in individual projects combining multiple experimental measurement techniques. Prerequisite: Graduate Student Standing. 3 hours lecture; 3 semester hours.

MEGN535. MODELING AND SIMULATION OF HUMAN MOVEMENT. 3.0 Semester Hrs.
Introduction to modeling and simulation in biomechanics. The course includes a synthesis of musculoskeletal properties, interactions with the environment, and computational optimization to construct detailed computer models and simulations of human movement. Prerequisite: MEGN315 and MEGN330.

MEGN536. COMPUTATIONAL BIOMECHANICS. 3.0 Semester Hrs.
Computational Biomechanics provides an introduction to the application of computer simulation to solve fundamental problems in biomechanics and bioengineering. Musculoskeletal biomechanics, joint kinematics, medical image reconstruction, hard and soft tissue modeling, and medical device design are considered in the context of a semester-long project to develop and evaluate an artificial knee implant. Leading commercial software tools are introduced with hands-on exercises. An emphasis is placed on understanding the limitations of the computer model as a predictive tool and the need for rigorous verification and validation of all modeling tasks. Clinical application of biomechanical modeling tools is highlighted and impact on patient quality of life is discussed. Prerequisite: MEGN330, MEGN324.

MEGN537. PROBABILISTIC BIOMECHANICS. 3.0 Semester Hrs.
The course introduces the application of probabilistic analysis methods in biomechanical systems. All real engineering systems, and especially human systems, contain inherent uncertainty due to normal variations in dimensional parameters, material properties, motion profiles, and loading conditions. The purpose of this course is to examine methods for including these sources of variation in biomechanical computations. Concepts of basic probability will be reviewed and applied in the context of engineering reliability analysis. Probabilistic analysis methods will be introduced and examples specifically pertaining to musculoskeletal biomechanics will be studied. Prerequisite: MEGN436 or MEGN536.

MEGN540. MECHATRONICS. 3.0 Semester Hrs.
(I) A course focusing on implementation aspects of mechatronic and control systems. Significant lab component involving embedded C programming on a mechatronics teaching platform, called a "haptic paddle", a single degree-of-freedom force-feedback joystick. Prerequisite: Graduate standing. 3 hours lecture; 3 semester hours.

MEGN544. ROBOT MECHANICS: KINEMATICS, DYNAMICS, AND CONTROL. 3.0 Semester Hrs.
(I) Mathematical representation of robot structures. Mechanical analysis including kinematics, dynamics, and design of robot manipulators. Representations for trajectories and path planning for robots. Fundamentals of robot control including, linear, nonlinear and force control methods. Introduction to off-line programming techniques and simulation. Prerequisite: EENG307 and MEGN441. 3 hours lecture; 3 semester hours.

MEGN545. ADVANCED ROBOT CONTROL. 3.0 Semester Hrs.
The focus is on mobile robotic vehicles. Topics covered are: navigation, mining applications, sensors, including vision, problems of sensing variations in rock properties, problems of representing human knowledge in control systems, machine condition diagnostics, kinematics, and path planning real time obstacle avoidance. Prerequisite: EENG307.

MEGN551. ADVANCED FLUID MECHANICS. 3.0 Semester Hrs.
(I) This first year graduate course covers the fundamentals of incompressible fluid mechanics with a focus on differential analysis and building a strong foundation in the prerequisite concepts required for subsequent study of computational fluid dynamics and turbulence. The course is roughly divided into four parts covering (i) the governing equations of fluid mechanics, (ii) Stokes flows and ideal-fluid flows, (iii) boundary layer flows, and (iv) hydrodynamic stability and transition to turbulence. Prerequisites: MEGN351. 3 hours lecture; 3 semester hours.

MEGN552. VISCOUS FLOW AND BOUNDARY LAYERS. 3.0 Semester Hrs.
(I) This course establishes the theoretical underpinnings of fluid mechanics, including fluid kinematics, stress-strain relationships, and derivation of the fluid-mechanical conservation equations. These include the mass-continuity and Navier-Stokes equations as well as the multi-component energy and species-conservation equations. Fluid-mechanical boundary-layer theory is developed and applied to situations arising in chemically reacting flow applications including combustion, chemical processing, and thin-film materials processing. Prerequisite: MEGN451, or CBEN430. 3 hours lecture; 3 semester hours.

MEGN553. INTRODUCTION TO COMPUTATIONAL TECHNIQUES FOR FLUID DYNAMICS AND TRANSPORT PHENOMENA. 3.0 Semester Hrs.
(II) Introduction to Computational Fluid Dynamics (CFD) for graduate students with no prior knowledge of this topic. Basic techniques for the numerical analysis of fluid flows. Acquisition of hands-on experience in the development of numerical algorithms and codes for the numerical modeling and simulation of flows and transport phenomena of practical and fundamental interest. Capabilities and limitations of CFD. Prerequisite: MEGN451. 3 hours lecture; 3 semester hours.
MEGN560. DESIGN AND SIMULATION OF THERMAL SYSTEMS. 3.0 Semester Hrs.
In this course the principles of design, modeling, analysis, and optimization of processes, devices, and systems are introduced and applied to conventional and advanced energy conversion systems. It is intended to integrate conservation principles of thermodynamics (MEGN361) with the mechanism relations of fluid mechanics (MEGN351) and heat transfer (MEGN471). The course begins with general system design approaches and requirements and proceeds with mathematical modeling, simulation, analysis, and optimization methods. The design and simulation of energy systems is inherently computational and involves modeling of thermal equipment, system simulation using performance characteristics, thermodynamic properties, mechanistic relations, and optimization (typically with economic-based objective functions). Fundamental principles for steady-state and dynamic modeling are covered. Methods for system simulation which involves predicting performance with a given design (fixed geometry) are studied. Analysis methods that include Pinch Technology, Exergy Analysis, and Thermo-economics are examined and are considered complementary to achieving optimal designs. Optimization encompasses objective function formulation, systems analytical methods, and programming techniques. Fundamental principles are explored through case studies and problem sets. Economics and optimization for analyses and design of advanced energy systems, such as Rankine and Brayton cycle power plants, combined heat and power, refrigeration and geothermal systems, fuel cells, turbomachinery, and heat transfer equipment are a focus. 3 lecture hours; 3 credit hours.

MEGN561. ADVANCED ENGINEERING THERMODYNAMICS. 3.0 Semester Hrs.
(I) First year graduate course in engineering thermodynamics that emphasizes a greater depth of study of undergraduate subject matter and an advancement to more complex analyses and topics. The course begins with fundamental concepts, 1st and 2nd Law analyses of processes, devices, and systems and advances to equations of state, property relations, ideal and non-ideal gas mixtures, chemically reacting systems, and phase equilibria. Historical and modern contexts on the development and advancements of thermodynamic concepts are given. Fundamental concepts are explored through the analysis of advanced systems, such as Rankine and Brayton cycle power plants, combined heat and power, refrigeration and geothermal systems, fuel cells, turbomachinery, and heat transfer equipment. 3 hours lecture; 3 semester hours.

MEGN566. COMBUSTION. 3.0 Semester Hrs.
(I) An introduction to combustion. Course subjects include: the development of the Chapman-Jouget solutions for deflagration and detonation, a brief review of the fundamentals of kinetics and thermochemistry, development of solutions for diffusion flames and premixed flames, discussion of flame structure, pollutant formation, and combustion in practical systems. Prerequisite: MEGN451 or CBEN430. 3 hours lecture; 3 semester hours.

MEGN567. PRINCIPLES OF BUILDING SCIENCE. 3.0 Semester Hrs.
(I) First or second year graduate course that covers the fundamentals of building energy systems, moist air processes, heating, ventilation, and air conditioning (HVAC) systems and the use of numerical models for heat and mass transfer to analyze advanced building technologies such as phase change materials, green roofs or cross laminated timber. Prerequisites: MEGN351, MEGN361, MEGN471. 3 hours lecture; 3 semester hours.

MEGN569. FUEL CELL SCIENCE AND TECHNOLOGY. 3.0 Semester Hrs.
Equivalent with CBEN569, CHEN569, MLGN569, MTGN569, (I) Investigate fundamentals of fuel-cell operation and electrochemistry from a chemical-thermodynamics and materials-science perspective. Review types of fuel cells, fuel-processing requirements and approaches, and fuel-cell system integration. Examine current topics in fuel-cell science and technology. Fabricate and test operational fuel cells in the Colorado Fuel Cell Center. 3 credit hours.

MEGN570. ELECTROCHEMICAL SYSTEMS ENGINEERING. 3.0 Semester Hrs.
(I) In this course, students will gain fundamental, quantitative insight into the operation of electrochemical devices for engineering analysis across a range of length scales and applications. The course will use the development of numerical models as a lens through which to view electrochemical devices. However, the course will also deal extensively with "real world" systems and issues, including experimental characterization, system optimization and design, and the cyclical interplay between models and physical systems. The course begins by establishing the equations that govern device performance at the most fundamental level, describing chemical and electrochemical reactions, heat transfer, transport of charged and neutral species, and material properties in operating devices. Subsequently, these equations will be used to discuss and analyze engineering issues facing three basic types of electrochemical devices: fuel cells, batteries, and sensors. At each juncture will evaluate our equations to determine when simpler models may be more suitable. Throughout the semester, concepts will be applied in homework assignments, including an over-arching, semester-long project to build detailed numerical models for an application of each student's choosing. 3 hours lecture; 3 semester hours.

MEGN571. ADVANCED HEAT TRANSFER. 3.0 Semester Hrs.
An advanced course in heat transfer that supplements topics covered in MEGN471. Derivation and solution of governing heat transfer equations from conservation laws. Development of analytical and numerical models for conduction, convection, and radiation heat transfer, including transient, multidimensional, and multimode problems. Introduction to turbulence, boiling and condensation, and radiative transfer in participating media. Prerequisite: MEGN471.

MEGN583. ADDITIVE MANUFACTURING. 3.0 Semester Hrs.
(II) Additive Manufacturing (AM), also known as 3D Printing in the popular press, is an emerging manufacturing technology that will see widespread adoption across a wide range of industries during your career. Subtractive Manufacturing (SM) technologies (CNCs, drill presses, lathes, etc.) have been an industry mainstay for over 100 years. The transition from SM to AM technologies, the blending of SM and AM technologies, and other developments in the manufacturing world has direct impact on how we design and manufacture products. This course will prepare students for the new design and manufacturing environment that AM is unlocking. The graduate section of this course differs from the undergraduate section in that graduate students perform AM-related research. While students complete quizzes and homework, they do not take a midterm or final exam. Prerequisites: MEGN200 and MEGN201 or equivalent project classes. 3 hours lecture; 3 semester hours.
MEGN584. MODELING MATERIALS PROCESSING. 3.0 Semester Hrs.
This course aims to enable students to examine a given materials processing operation or manufacturing problem, identify the important phenomena, develop simple quantitative models of those phenomena, and apply them to obtain reasonable solutions to practical design issues and problems. Phenomena involving fluid flow, heat transfer, solidification, diffusion, and thermal-mechanical behavior are related to terms in governing equations based on heat, mass, and momentum balances. These equations are simplified by formal estimation and scaling to create mechanistic process models, often selected from classic analytical solutions. Example applications to manufacturing processes for metals and polymers include controlled cooling, extrusion, casting, and welding. Prerequisite: Undergraduate degree in Mechanical Engineering or equivalent (that includes relevant courses of calculus, differential equations, materials and/or manufacturing, heat transfer, fluid mechanics, and solid mechanics) or instructor consent.

MEGN585. NETWORK MODELS. 3.0 Semester Hrs.
(I) We examine network flow models that arise in manufacturing, energy, mining, transportation and logistics: minimum cost flow models in transportation, shortest path problems in assigning inspection effort on a manufacturing line, and maximum flow models to allocate machine-hours to jobs. We also discuss an algorithm or two applicable to each problem class. Computer use for modeling (in a language such as AMPL) and solving (with software such as CPLEX) these optimization problems is introduced. Offered every other year. 3 hours lecture; 3 semester hours.

MEGN586. LINEAR OPTIMIZATION. 3.0 Semester Hrs.
(I) We address the formulation of linear programming models, linear programs in two dimensions, standard form, the Simplex method, duality theory, complementary slackness conditions, sensitivity analysis, and multi-objective programming. Applications of linear programming models include, but are not limited to, the areas of manufacturing, energy, mining, transportation and logistics, and the military. Computer use for modeling (in a language such as AMPL) and solving (with software such as CPLEX) these optimization problems is introduced. Offered every other year. 3 hours lecture; 3 semester hours.

MEGN587. NONLINEAR OPTIMIZATION. 3.0 Semester Hrs.
Equivalent with MEGN487,
(II) We address both unconstrained and constrained nonlinear model formulation and corresponding algorithms (e.g., Gradient Search and Newton’s Method, and Lagrange Multiplier Methods and Reduced Gradient Algorithms, respectively). Applications of state-of-the-art hardware and software will emphasize solving real-world engineering problems in areas such as manufacturing, energy, mining, transportation and logistics, and the military. Computer use for modeling (in a language such as AMPL) and solving (with software such as CPLEX) these optimization problems is introduced. Prerequisite: MATH111. 3 hours lecture; 3 semester hours.

MEGN588. INTEGER OPTIMIZATION. 3.0 Semester Hrs.
Equivalent with MEGN488,
(I) We address the formulation of integer programming models, the brand-and-bound algorithm, total unimodularity and the ease with which these models are solved, and then suggest methods to increase tractability, including cuts, strong formulations, and decomposition techniques, e.g., Lagrangian relaxation, Benders decomposition. Applications include manufacturing, energy, mining, transportation and logistics, and the military. Computer use for modeling (in a language such as AMPL) and solving (with software such as CPLEX) these optimization problems is introduced. Prerequisite: none. 3 hours lecture; 3 semester hours. Years to be Offered: Every Other Year.

MEGN592. RISK AND RELIABILITY ENGINEERING ANALYSIS AND DESIGN. 3.0 Semester Hrs.
(I) The importance of understanding, assessing, communicating, and making decisions based in part upon risk, reliability, robustness, and uncertainty is rapidly increasing in a variety of industries (e.g.: petroleum, electric power production, etc.) and has been a focus of some industries for many decades (e.g.: nuclear power, aerospace, automotive, etc.). This graduate class will provide the student with a technical understanding of and ability to use common risk assessment tools such as Reliability Block Diagrams (RBD), Failure Modes and Effects Analysis (FMEA), and Probabilistic Risk Assessment (PRA); and new tools being developed in universities including Function Failure Design Methods (FFDM), Function Failure Identification and Propagation (FFIP), and Uncoupled Failure Flow State Reasoning (UFFSR) among others. Students will also be provided with a high-level overview of what risk really means and how to contextualize risk information. Methods of communicating and making decisions based in part upon risk information will be discussed. 3 hours lecture, 3 semester hours.

MEGN598. SPECIAL TOPICS IN MECHANICAL ENGINEERING. 6.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once, but no more than twice for the same course content. Prerequisite: none. Variable credit: 0 to 6 credit hours. Repeatable for credit under different titles.

MEGN599. INDEPENDENT STUDY. 0.5-6 Semester Hr.
(I, II, S) Individual research or special problem projects supervised by a faculty member.

MEGN671. RADIATION HEAT TRANSFER. 3.0 Semester Hrs.
Accurate radiative transfer models are essential in many fields, including: combustion, propulsion, astronomy, solar technology, and climate science, to name only a few. The complex nature of radiative transfer can be intimidating, and calculations can be computationally expensive. In the first half of this course, we will study the role of material and surface properties on radiative transfer and develop and solve models for radiation exchange between surfaces (applicable to solar technology and high temperature systems). In the second half of the course, we will tackle radiation propagation through absorbing, scattering, and emitting media (gases, aerosols, semitransparent materials). We will model these systems using the Radiative Transfer Equation (RTE) and explore a few approaches to solving the RTE for select environments. Prerequisite: MEGN471.
MEGN686. ADVANCED LINEAR OPTIMIZATION. 3.0 Semester Hrs.
(II) As an advanced course in optimization, we expand upon topics in linear programming: advanced formulation, the dual simplex method, the interior point method, algorithmic tuning for linear programs (including numerical stability considerations), column generation, and Dantzig-Wolfe decomposition. Time permitting, dynamic programming is introduced. Applications of state-of-the-art hardware and software emphasize solving real-world problems in areas such as manufacturing, mining, energy, transportation and logistics, and the military. Computers are used for model formulation and solution. Offered every other year. Prerequisite: MEGN586. 3 hours lecture; 3 semester hours.

MEGN688. ADVANCED INTEGER OPTIMIZATION. 3.0 Semester Hrs.
(II) As an advanced course in optimization, we expand upon topics in integer programming: advanced formulation, strong integer programming formulations (e.g., symmetry elimination, variable elimination, persistence), in-depth mixed integer programming cuts, rounding heuristics, constraint programming, and decompositions. Applications of state-of-the-art hardware and software emphasize solving real-world problems in areas such as manufacturing, mining, energy, transportation and logistics, and the military. Computers are used for model formulation and solution. Prerequisite: MEGN588. 3 hours lecture; 3 semester hours. Years to be Offered: Every Other Year.

MEGN698. SPECIAL TOPICS. 6.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once, but no more than twice for the same course content. Prerequisite: none. Variable credit: 0 to 6 credit hours. Repeatable for credit under different titles.

MEGN699. INDEPENDENT STUDY. 0.5-6 Semester Hr.
(I, II, S) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/experience and maximums vary by department. Contact the Department for credit limits toward the degree.

MEGN707. GRADUATE THESIS / DISSERTATION RESEARCH CREDIT. 1-15 Semester Hr.
(I, II, S) Research credit hours required for completion of a Masters-level thesis or Doctoral dissertation. Research must be carried out under the direct supervision of the student's faculty advisor. Variable class and semester hours. Repeatable for credit.