METALLURGICAL AND MATERIALS ENGINEERING (MTGN)

MTGN198. SPECIAL TOPICS IN METALLURGICAL AND MATERIALS ENGINEERING. 1-3 Semester Hr.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). The course topic is generally offered only once. Prerequisite: none. 1 to 3 semester hours. Repeatable for credit under different titles.

MTGN199. INDEPENDENT STUDY. 1-3 Semester Hr.
(I, II, S) Independent work leading to a comprehensive report. This work may take the form of conferences, library, and laboratory work. Choice of problem is arranged between student and a specific department faculty-member. Prerequisite: Selection of topic; Independent Study Form must be completed and submitted to Registrar. 1 to 3 semester hours. Repeatable for credit.

MTGN202. ENGINEERED MATERIALS. 3.0 Semester Hrs.
Equivalent with SYGN202.
(I, II, S) Introduction to the Metallurgical and Materials Engineering paradigm: processing, structure, and properties. The course will relate technologically significant processing procedures to resultant structures. The material structure will be examined to determine its effect upon material properties. Students will study materials engineering methodologies and learn terminology. Prerequisites: CHGN122 or CHGN125, MATH112, and PHGN100. 3 hours lecture; 3 semester hours.

MTGN211. STRUCTURE OF MATERIALS. 3.0 Semester Hrs.
(II) Principles of atomic bonding, crystallography, and amorphous structures. ii) Symmetry relationships to material properties. iii) Atomic structure determination through diffraction techniques. Prerequisite: MTGN202. Corequisite: PHGN200. 3 hours lecture; 3 semester hours.

MTGN219. ART AND SCIENCE OF GLASSBLOWING. 2.0 Semester Hrs.
Explore the science of glass by learning artistic glassblowing. Lectures will cover basic glass network structure, melt processing and viscosity, forming and cold working, as well as optical and mechanical properties. Over the course of the semester, laboratory exercises will train students in basic glassblowing and safe use of a hot glass shop. Students who pass the course with a B or better will be certified to use the Hill Hall hot glass shop during open shop hours.

MTGN251. METALLURGICAL AND MATERIALS THERMODYNAMICS. 3.0 Semester Hrs.
(I) Applications of thermodynamics in extractive and physical metallurgy and materials science. Thermodynamics of solutions including solution models and thermodynamic properties of alloys and slags. Reaction equilibria with examples in alloy systems and slags. Phase stability analysis. Thermodynamic properties of binary alloys in the solid state, defect equilibrium, and interactions. Prerequisites: MATH112, CHGN122 or CHGN125, and PHGN100. 3 hours lecture; 3 semester hours.

MTGN272. MME FIELD SESSION. 3.0 Semester Hrs.
(S) Introduction to the field of Metallurgical and Materials Engineering. Overview of opportunities, expectations, and practices within the MME department and the broader materials community. Introduction to bonding, crystal and grain structure, application space, and Structure-Property-Processing relationships. Laboratory projects and plant visits. Prerequisites: MATH112, PHGN100. 9 hours lab; 3 semester hours.

MTGN281. INTRODUCTION TO PHASE EQUILIBRIA IN MATERIALS SYSTEMS. 2.0 Semester Hrs.
(II) Review of the concepts of chemical equilibrium and derivation of the Gibbs phase rule. Application of the Gibbs phase rule to interpreting one, two and three component phase equilibrium diagrams. Application to alloy and ceramic materials systems. Emphasis on the evolution of phases and their amounts and the resulting microstructural development. Prerequisites: MTGN202, and MTGN251 or MTGN351. 2 hours lecture; 2 semester hours.

MTGN289. SPECIAL TOPICS IN METALLURGICAL AND MATERIALS ENGINEERING. 3.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). The course topic is generally offered only once. Prerequisite: none. 1 to 3 semester hours. Repeatable for credit under different titles.

MTGN298. SPECIAL TOPICS IN METALLURGICAL AND MATERIALS ENGINEERING. 3.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). The course topic is generally offered only once. Prerequisite: none. 1 to 3 semester hours. Repeatable for credit under different titles.

MTGN299. INDEPENDENT STUDY. 1-3 Semester Hr.
(I, II, S) Independent work leading to a comprehensive report. This work may take the form of conferences, library, and laboratory work. Choice of problem is arranged between student and a specific department faculty-member. Prerequisite: Selection of topic; Independent Study Form must be completed and submitted to Registrar. 1 to 3 semester hours. Repeatable for credit.

MTGN300. FOUNDRY METALLURGY. 2.0 Semester Hrs.
(II) Design and metallurgical aspects of casting, patterns, molding materials and processes, solidification processes, risers and gating concepts, casting defects and inspection, melting practice, cast alloy selection. Corequisite: MTGN300L. 2 hours lecture; 2 semester hours.

MTGN300L. FOUNDRY METALLURGY LABORATORY. 1.0 Semester Hr.
Equivalent with MTGN302.
(II) Experiments in the foundry designed to supplement the lectures of MTGN300. Corequisite: MTGN300. 3 hours lab; 1 semester hour.

MTGN311. STRUCTURE OF MATERIALS. 3.0 Semester Hrs.
(I) Principles of crystallography and crystal chemistry. Characterization of crystalline materials using X-ray diffraction techniques. Applications to include compound identification, lattice parameter measurement, orientation of single crystals, and crystal structure determination. Prerequisites: PHGN200 and MTGN202. Co-requisite: MTGN311L. 3 hours lecture; 3 semester hours.

MTGN311L. STRUCTURE OF MATERIALS LABORATORY. 1.0 Semester Hr.
(I) (II) Experiments in structure of materials to supplement the lectures of MTGN311. Co-requisite: MTGN311. 3 hours lab; 1 semester hour.
MTGN314. PROPERTIES AND PROCESSING OF CERAMICS. 2.0 Semester Hrs.
(I) Application of engineering principles and fundamental structure-
processing-property relationship to inorganic non-metallic materials.
Emergence of macroscopic characteristics and functional properties
from bonding, structure, symmetry, and defects. Applications of basic
thermodynamics and kinetic principles to powder-based processing.
Corequisites: MTGN314L, MTGN202, and MTGN251 or MTGN351. 2
hours lecture; 2 semester hours.

MTGN314L. PROPERTIES AND PROCESSING OF CERAMICS
LABORATORY. 1.0 Semester Hr.
(I) Laboratory for MTGN314. Corequisite: MTGN314. 3 hours lab; 1
semester hour.

MTGN315. ELECTRICAL PROPERTIES AND APPLICATIONS
OF MATERIALS. 3.0 Semester Hrs.
(II) Survey of the electrical properties of materials, and the applications
of materials as electrical circuit components. The effects of chemistry,
processing and microstructure on the electrical properties. Functions,
performance requirements and testing methods of material for each
type of circuit component. General topics covered are conductors,
resistors, insulators, capacitors, energy converters, magnetic materials
and integrated circuits. Prerequisite: PHGN200. Corequisite: MTGN211
or MTGN311. 3 hours lecture; 3 semester hours.

MTGN333. INTRODUCTION TO BLADESMITHING. 3.0 Semester Hrs.
(I, II, S) An introduction to the metallurgy and art of bladesmithing.
The course covers ferrous metallurgy with a focus on tools steels used for
creating edged tools. Students will learn and execute techniques for
alloy selection, shaping, profiling, beveling, heat treating, and sharpening
knives. Students will complete at least two knives, one specified by the
instructor, and one of the students own design. Co-requisite: MTGN348
or permission of instructor. 1 hour lecture; 2 hours lab; 3 semester hours.

MTGN334. CHEMICAL PROCESSING OF MATERIALS. 3.0 Semester Hrs.
(II) Development and application of fundamental principles related to
the processing of metals and materials by thermochemical and aqueous
and fused salt electrochemical/chemical routes. The course material
is presented within the framework of a formalism that examines
the physical chemistry, thermodynamics, reaction mechanisms and kinetics
inherent to a wide selection of chemical processing systems. The
general formalism provides for a transferable knowledge-base to other
systems not specifically covered in the course. Prerequisites: MTGN272,
MTGN351, and CEEN267 or EDNS251 or EDNS261 or EDNS262 or
EDNS264 or EDNS269. Corequisite: MTGN334L. 3 hours lecture, 3
semester hours.

MTGN334L. CHEMICAL PROCESSING OF MATERIALS
LABORATORY. 1.0 Semester Hr.
(II) Experiments in chemical processing of materials to supplement the
lectures of MTGN334. Corequisite: MTGN334. 3 hours lab; 1 semester
hour.

MTGN340. COOPERATIVE EDUCATION. 1-3 Semester Hr.
(I, II, S) Supervised, full-time, engineering-related employment for
a continuous six-month period (or its equivalent) in which specific
educational objectives are achieved. 1 to 3 semester hours. Cooperative
education credit does not count toward graduation except under special
conditions. Repeatable.

MTGN348. MICROSTRUCTURAL DEVELOPMENT. 3.0 Semester Hrs.
(II) An introduction to the relationships between microstructure and
properties of materials, with emphasis on metallic and ceramic systems;
Fundamentals of imperfections in crystalline materials on material
behavior; recrystallization and grain growth; strengthening mechanisms:
grain refinement, solid solution strengthening, precipitation strengthening,
and microstructural strengthening; and phase transformations.
Prerequisites: MTGN211 or MTGN311, and MTGN251 or MTGN351.
Corequisites: MTGN281 or MTGN381, and MTGN348L. 3 hours lecture,
3 semester hours.

MTGN348L. MICROSTRUCTURAL DEVELOPMENT LABORATORY.
1.0 Semester Hr.
(II) Experiments in microstructural development of materials to
supplement the lectures of MTGN348. Corequisite: MTGN348. 3 hours
lab; 1 semester hour.

MTGN350. STATISTICAL PROCESS CONTROL AND DESIGN
OF EXPERIMENTS. 3.0 Semester Hrs.
(I) Introduction to statistical process control, process capability analysis
and experimental design techniques. Statistical process control theory
and techniques developed and applied to control charts for variables and
attributes involved in process control and evaluation. Process capability
concepts developed and applied to the evaluation of manufacturing
processes. Theory of designed experiments developed and applied to
full factorial experiments, fractional factorial experiments, screening
experiments, multilevel experiments and mixture experiments. Analysis
of designed experiments by graphical and statistical techniques.
Introduction to computer software for statistical process control and for
the design and analysis of experiments. 3 hours lecture, 3 semester hours.

MTGN351. METALLURGICAL AND MATERIALS THERMODYNAMICS.
3.0 Semester Hrs.
(I) Applications of thermodynamics in extractive and physical metallurgy
and materials science. Thermodynamics of solutions including solution
models, calculation of activities from phase diagrams, and measurements
of thermodynamic properties of alloys and slags. Reaction equilibria
with examples in alloy systems and slags. Phase stability analysis.
Thermodynamic properties of phase diagrams in material systems, defect
equilibrium and interactions. Prerequisite: CHGN209 or CBEN210. 3
hours lecture; 3 semester hours.

MTGN352. METALLURGICAL AND MATERIALS KINETICS. 3.0
Semester Hrs.
(I) Introduction to reaction kinetics: chemical kinetics, atomic and
molecular diffusion, surface thermodynamics and kinetics of interfaces
and nucleation-and-growth. Applications to materials processing and
performance aspects associated with gas/solid reactions, precipitation
and dissolution behavior, oxidation and corrosion, purification of
semiconductors, carburizing of steel, formation of p-n junctions and
other important materials systems. Prerequisite: MTGN272. Corequisite:
MTGN251 or MTGN351. 3 hours lecture; 3 semester hours.

MTGN381. INTRODUCTION TO PHASE EQUILIBRIA IN MATERIALS
SYSTEMS. 2.0 Semester Hrs.
(I) Review of the concepts of chemical equilibrium and derivation of the
Gibbs phase rule. Application of the Gibbs phase rule to interpreting
one, two and three component phase equilibrium diagrams. Application
to alloy and ceramic materials systems. Emphasis on the evolution of
phases and their amounts and the resulting microstructural development.
Prerequisite/Co-requisite: MTGN351. 2 hours lecture; 2 semester hours.
MTGN398. SPECIAL TOPICS IN METALLURGICAL AND MATERIALS ENGINEERING. 1-3 Semester Hr.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). The course topic is generally offered only once. Prerequisite: none. 1 to 3 semester hours. Repeatable for credit under different titles.

MTGN399. INDEPENDENT STUDY. 1-3 Semester Hr.
(I, II, S) Independent work leading to a comprehensive report. This work may take the form of conferences, library, and laboratory work. Choice of problem is arranged between student and a specific department faculty-member. Prerequisite: Selection of topic; Independent Study Form must be completed and submitted to Registrar. 1 to 3 semester hours. Repeatable for credit.

MTGN403. SENIOR THESIS. 3.0 Semester Hrs.
(I, II, S) Two-semester individual research under the direction of members of the MME faculty. Work may include library and laboratory research on topics of relevance. Oral presentation will be given at the end of the second semester and written thesis submitted to committee of evaluation. 3 hours research; 3 semester hours.

MTGN407. STEEL BAR MANUFACTURING. 1.0 Semester Hr.
(I) Facilities and metallurgical principles for manufacturing carbon and low alloy steel bars that are further transformed into high performance parts. Discussion of steel melting, ladle refining, casting, hot rolling, heat treatment, final processing, inspection and testing methods. Implications of process design and control on chemical uniformity, macrostructure, microstructure, internal quality, surface quality, mechanical properties and residual stresses. Review of customer processes and requirements for manufacturing parts from bars by hot or cold forging, machining, surface treating, and heat treating. Applications include crankshafts, gears, axles, drive shafts, springs, bearings, rails, line pipe, oil well casing, etc. Prerequisite: MTGN348. 1 hour lecture; 1.0 semester hour.

MTGN412. CERAMIC ENGINEERING. 3.0 Semester Hrs.
(I) Application of engineering principles to nonmetallic and ceramic materials. Processing of raw materials and production of ceramic bodies, glazes, glasses, enamels, and cements. Firing processes and reactions in glass bonded as well as mechanically bonded systems. Prerequisite: MTGN348. 3 hours lecture; 3 semester hours.

MTGN414. ADVANCED PROCESSING AND SINTERING OF CERAMICS. 3.0 Semester Hrs.
(II) Principles of ceramics processing and the relationship between processing and microstructure, with a focus on advanced microstructural control using thermal and athermal energy input in single and multiphase systems. Principles will be illustrated using case studies on specific ceramic materials. A project to design a ceramic fabrication process is required. Prerequisite: MTGN314. 3 hours lecture; 3 semester hours.

MTGN415. ELECTRICAL PROPERTIES AND APPLICATIONS OF MATERIALS. 3.0 Semester Hrs.
(II) Survey of the electrical properties of materials, and the applications of materials as electrical circuit components. The effects of chemistry, processing and microstructure on the electrical properties. Functions, performance requirements and testing methods of materials for each type of circuit component. General topics covered are conductors, resistors, insulators, capacitors, energy converters, magnetic materials and integrated circuits. Prerequisites: PHGN200 and MTGN311. 3 hours lecture; 3 semester hours.

MTGN419. NON-CRYSTALLINE MATERIALS. 3.0 Semester Hrs.
(I, II, S) Introduction to the principles of glass science and engineering and non-crystalline materials in general. Glass formation, structure, crystallization and properties will be covered, along with a survey of commercial glass compositions, manufacturing processes and applications. Prerequisites: MTGN211 or MTGN311, and MTGN412 or MTGN314. 3 hours lecture; 3 semester hours.

MTGN429. METALLURGICAL ENVIRONMENT. 3.0 Semester Hrs.
(I) Examination of the interface between metallurgical process engineering and environmental engineering. Wastes, effluents and their point sources in metallurgical processes such as mineral concentration, value extraction and process metallurgy are studied in context. Fundamentals of metallurgical unit operations and unit processes with those applicable to waste and effluent control, disposal and materials recycling are covered. Engineering design and engineering cost components are also included for selected examples. Fundamentals and applications receive equal coverage. Prerequisites: MTGN334. 3 hours lecture; 3 semester hours.

MTGN430. PHYSICAL CHEMISTRY OF IRON AND STEELMAKING. 3.0 Semester Hrs.
(I, II, S) Physical chemistry principles of blast furnace and direct reduction production of iron and refining of iron to steel. Discussion of raw materials, productivity, impurity removal, deoxidation, alloy additions, and ladle metallurgy. Offered every other year. Prerequisites: MTGN334, and MTGN251 or MTGN351. 3 hours lecture; 3 semester hours.

MTGN431. HYDRO- AND ELECTRO-METALLURGY. 3.0 Semester Hrs.
(I, II, S) Physicochemical principles associated with the extraction and refining of metals by hydro- and electrometallurgical techniques. Discussion of unit processes in hydrometallurgy, electrowinning, and electrorefining. Analysis of integrated flowsheets for the recovery of nonferrous metals. Offered every other year. Prerequisites: MTGN334, MTGN352, and MTGN351 or MTGN251. Corequisite: MTGN461, MTGN461L. 3 hours lecture; 3 semester hours.

MTGN432. PYROMETALLURGY. 3.0 Semester Hrs.
(II) Extraction and refining of metals including emerging practices. Modifications driven by environmental regulations and by energy minimization. Analysis and design of processes and the impact of economic constraints. Prerequisite: MTGN334. 3 hours lecture; 3 semester hours.

MTGN442. ENGINEERING ALLOYS. 3.0 Semester Hrs.
(I, II, S) This course is intended to be an important component of the physical metallurgy sequence, to reinforce and integrate principles from earlier courses, and enhance the breadth and depth of understanding of concepts in a wide variety of alloy systems. Metallic systems considered include iron and steels, copper, aluminum, titanium, superalloys, etc. Phase stability, microstructural evolution and structure/property relationships are emphasized. Offered every other year. Prerequisite: MTGN348. 3 hours lecture; 3 semester hours.

MTGN445. MECHANICAL PROPERTIES OF MATERIALS. 3.0 Semester Hrs.
MTGN352. METALLURGICAL AND MATERIALS ENGINEERING (MTGN) - (2020-2021 Catalog)

MTGN352. MECHANICAL PROPERTIES OF MATERIALS LABORATORY. 1.0 Semester Hr.
(I) Laboratory sessions devoted to advanced mechanical-testing techniques to illustrate the application of the fundamentals presented in the lectures of MTGN445. Corequisite: MTGN445. 3 hours lab; 1 semester hour.

MTGN450. STATISTICAL PROCESS CONTROL AND DESIGN OF EXPERIMENTS. 3.0 Semester Hrs.
(I) Introduction to statistical process control, process capability analysis and experimental design techniques. Statistical process control theory and techniques developed and applied to control charts for variables and attributes involved in process control and evaluation. Process capability concepts developed and applied to the evaluation of manufacturing processes. Theory of designed experiments developed and applied to full factorial experiments, fractional factorial experiments, screening experiments, multi-level experiments and mixture experiments. Analysis of designed experiments by graphical and statistical techniques. Introduction to computer software for statistical process control and for the design and analysis of experiments. Prerequisite: none. 3 hours lecture, 3 semester hours.

MTGN451. CORROSION ENGINEERING. 3.0 Semester Hrs.
(I, II, S) Principles of electrochemistry. Corrosion mechanisms. Methods of corrosion control including cathodic and anodic protection and coatings. Examples, from various industries, of corrosion problems and solutions. Prerequisite: MTGN251 or MTGN351. 3 hours lecture; 3 semester hours.

MTGN456. ELECTRON MICROSCOPY. 2.0 Semester Hrs.
(I, II, S) Introduction to electron optics and the design and application of transmission and scanning electron microscopes. Interpretation of images produced by various contrast mechanisms. Electron diffraction analysis and the indexing of electron diffraction patterns. Prerequisites: MTGN211 or MTGN311. Corequisite: MTGN456L. 2 hours lecture; 2 semester hours.

MTGN456L. ELECTRON MICROSCOPY LABORATORY. 1.0 Semester Hr.
Equivalent with MTGN458.
(I, II, S) Laboratory exercises to illustrate specimen preparation techniques, microscope operation, and the interpretation of images produced from a variety of specimens, and to supplement the lectures in MTGN456. Corequisite: MTGN456. 3 hours lab; 1 semester hour.

MTGN461. TRANSPORT PHENOMENA AND REACTOR DESIGN FOR METALLURGICAL AND MATERIALS ENGINEERS. 3.0 Semester Hrs.

MTGN461L. TRANSPORT PHENOMENA AND REACTOR DESIGN LABORATORY. 1.0 Semester Hr.
(II) Experiments in transport phenomena and reactor design to supplement the lectures of MTGN461. Co-requisite: MTGN431, MTGN461. 3 hours lab; 1 semester hour.

MTGN462. SOLID WASTE MINIMIZATION AND RECYCLING. 3.0 Semester Hrs.
(I) This course will examine, using case studies, how industry applies engineering principles to minimize waste formation and to meet solid waste recycling challenges. Both proven and emerging solutions to solid waste environmental problems, especially those associated with metals, will be discussed. Prerequisites: CEEN301, CEEN302, and CHGN403. 3 hours lecture; 3 semester hours.

MTGN463. POLYMER ENGINEERING. 3.0 Semester Hrs.
(I, II, S) An introduction to the structure and properties of polymeric materials, their deformation and failure mechanisms, and the design and fabrication of polymeric end items. The molecular and crystallographic structures of polymers will be developed and related to the elastic, viscoelastic, yield, and fracture properties of polymer solids and reinforced polymer composites. Emphasis will be placed on forming and joining techniques for end item fabrication including: extrusion, injection molding, reaction injection molding, thermoforming, and blow molding. The design of end items will be considered in relation to: materials selection, manufacturing engineering, properties and applications. Offered every other year. 3 hours lecture; 3 semester hours.

MTGN464. FORGING AND FORMING. 2.0 Semester Hrs.
Introduction to plasticity. Survey and analysis of working operations of forging, extrusion, rolling, wire drawing and sheet-metal forming. Metallurgical structure evolution during working. Prerequisite: MTGN381 or CEEN311, MTGN348. Co-requisite: MTGN464L.

MTGN464L. FORGING AND FORMING LABORATORY. 1.0 Semester Hr.
(II) Experiments in forging and forming to supplement the lectures of MTGN464. Corequisite: MTGN464. 3 hours lab; 1 semester hour.

MTGN465. MECHANICAL PROPERTIES OF CERAMICS. 3.0 Semester Hrs.
(I, II) Mechanical properties of ceramics and ceramic-based composites; brittle fracture of solids; toughening mechanisms in composites; fatigue, high-temperature mechanical behavior, including fracture and creep deformation. Offered every other year. Prerequisites: MTGN211 or MTGN311, and MTGN314 or MTGN412. 3 hours lecture; 3 semester hours.

MTGN466. MATERIALS DESIGN: SYNTHESIS, CHARACTERIZATION AND SELECTION. 3.0 Semester Hrs.
(I) Application of fundamental materials-engineering principles to the design of systems for extraction and synthesis, and to the selection of materials. Systems covered range from those used for metallurgical processing to those used for processing of emergent materials. Microstructural design, characterization and properties evaluation provide the basis for linking synthesis to applications. Selection criteria tied to specific requirements such as corrosion resistance, wear and abrasion resistance, high temperature service, cryogenic service, vacuum systems, automotive systems, electronic and optical systems, high strength/weight ratios, recycling, economics and safety issues. Materials investigated include mature and emergent metallic, ceramic and composite systems used in the manufacturing and fabrication industries. Student-team design activities including oral and written reports. Prerequisite: MTGN351, MTGN352, MTGN445 and MTGN461. 1 hour lecture, 6 hours lab; 3 semester hours.
MTGN467. MATERIALS DESIGN: SYNTHESIS, CHARACTERIZATION AND SELECTION. 2.0 Semester Hrs.
(I) Application of fundamental materials engineering principles to the design of systems, processes, and/or components for extraction, synthesis, operation and/or selection of materials in open-ended projects with realistic constraints. Project topics range from processes used for metallurgical processing and extraction to design and development of emergent materials to process/component analysis and (re)design. Chemical and microstructural characterization and property measurements provide the basis for linking synthesis to application and/or process to product. Selection criteria tied to specific requirements drive design under realistic constraints that include an appropriate mix of technical, economic, safety, and other considerations. Activities are carried out in teams in collaboration with project sponsors/clients. Prerequisite: MTGN348. Corequisites: MTGN461, MTGN445. 1 hour lecture, 3 hours lab; 2 semester hours.

MTGN468. MATERIALS DESIGN: SYNTHESIS, CHARACTERIZATION AND SELECTION. 2.0 Semester Hrs.
(II) Application of fundamental materials engineering principles to the design of systems, processes, and/or components for extraction, synthesis, operation and/or selection of materials in open-ended projects with realistic constraints. Project topics range from processes used for metallurgical processing and extraction to design and development of emergent materials to process/component analysis and (re)design. Chemical and microstructural characterization and property measurements provide the basis for linking synthesis to application and/or process to product. Selection criteria tied to specific requirements drive design under realistic constraints that include an appropriate mix of technical, economic, safety, and other considerations. Activities are carried out in teams in collaboration with project sponsors/clients. Prerequisite: MTGN352. Corequisites: MTGN348, MTGN334. 1 hour lecture, 3 hours lab; 2 semester hours.

MTGN469. FUEL CELL SCIENCE AND TECHNOLOGY. 3.0 Semester Hrs.
(I) Fuel cells provide one of the most efficient means for converting the chemical energy stored in a fuel to electrical energy. Fuel cells offer improved energy efficiency and reduced pollution compared to heat engines. While composed of no (or very few) moving parts, a complete fuel cell system amounts to a small chemical plant for the production of power. This course introduces students to the fundamental aspects of fuel cell systems, with emphasis placed on proton exchange membrane (PEM) and solid oxide fuel cells (SOFC). Students will learn the basic principles of electrochemical energy conversion while being exposed to relevant topics in materials science, thermodynamics, and fluid mechanics. Offered every other year. Prerequisites: PHGN200, MATH315, and MTGN251 or MTGN351 or CHGN209 or CHGN210 or MEGN361. 3 hours lecture; 3 semester hours.

MTGN472. BIOMATERIALS I. 3.0 Semester Hrs.
(I) This course introduces biomaterials by combining materials engineering principles with understanding of aspects of molecular and cellular biology so that students learn how materials interact with biological systems, particularly for medical use. The course is organized around four main topics: 1) fundamental properties of biomaterials; 2) fundamental concepts in biology relevant to biomaterials; 3) interactions of physiological systems with biomaterials, and 4) processing of biopolymers, bioactive glasses and glasses, biomaterials and composites. Key topics covered include processing of materials to achieve specific biological responses, surface energy and surface modification; protein adsorption; cell adhesion, spreading and migration; biomaterials implantation and acute inflammation; blood-materials interactions; biofilms and biomaterials degradation and clinical applications of biomaterials. Offered every other year. Prerequisite: MTGN202. 3 hours lecture; 3 semester hours.

MTGN473. COMPUTATIONAL MATERIALS. 3.0 Semester Hrs.
(II) Computational Materials is a course designed as an introduction to computational approaches used in modern materials science and engineering, and to provide the hands-on experience in using massively parallel supercomputers and executing popular materials software packages. The main goal is to provide exposure to students to the growing and highly interdisciplinary field of computational materials science and engineering, through a combination of lectures, hands-on exercises and a series of specifically designed projects. The course is organized to cover different length scales including: atomistic (electronic structure) calculations, molecular dynamics, and phase equilibria modeling. The emerging trends in data driven materials discovery and design are also covered. Particular emphasis is placed on the validation of computational results and recent trends in integrating theory, computations and experiment. 3 hours lecture; 3 semester hours.

MTGN475. METALLURGY OF WELDING. 2.0 Semester Hrs.
(I, II, S) Introduction to welding processes; thermal aspects; selection of filler metals; stresses; stress relief and annealing; pre- and postweld heat treating; weld defects; welding ferrous and nonferrous alloys; weld metal phase transformations; metallurgical evaluation of resulting weld microstructures and properties; and welding tests. Offered every other year. Prerequisite: MTGN348. Corequisite: MTGN475L. 2 hours lecture; 2 semester hours.

MTGN475L. METALLURGY OF WELDING LABORATORY. 1.0 Semester Hr.
Equivalent with MTGN477.
(I, II, S) Experiments designed to supplement the lectures in MTGN475. Offered every other year. Corequisite: MTGN475. 3 hours lab; 1 semester hour.

MTGN497. SUMMER PROGRAMS. 0.0 Semester Hrs.
(S) Summer registration. Repeatable.

MTGN498. SPECIAL TOPICS IN METALLURGICAL AND MATERIALS ENGINEERING. 3.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). The course topic is generally offered only once. Prerequisite: none. 1 to 3 semester hours. Repeatable for credit under different titles.
MTGN499. INDEPENDENT STUDY. 1-3 Semester Hr. 
(I, II, S) Independent advanced-work leading to a comprehensive report. 
This work may take the form of conferences, library, and laboratory 
work. Selection of problem is arranged between student and a specific 
Department faculty-member. Prerequisite: Selection of topic; Independent 
Study Form must be completed and submitted to Registrar. 1 to 3 
semester hours. Repeatable for credit to a maximum of 6 hours.

MTGN501. MME GRADUATE SEMINAR. 0.5 Semester Hrs. 
(I, II) All full-time MME graduate students must attend the Metallurgical 
and Materials Engineering seminar. Students must take the Graduate 
Seminar course every semester that they are enrolled at CSM. At the 
end of each semester, students are assigned either a satisfactory or 
unsatisfactory progress grade, based on attendance, until the final 
semester of the student's degree program, when a letter grade is 
assigned based on all prior semesters' attendance grades. As a result, 
while these courses are taken each year, only a maximum of 1.0 hours 
total of course credit is conferred. Students who have official part-time 
status are not required to sign up for Graduate Seminar. Attendance 
of other seminars outside MME can substitute for seminar attendance 
in MME following course instructor approval. 1 hour lecture; 0.5 hours. 
Repeatable up to 1 hour.

MTGN505. CRYSTALLOGRAPHY AND DIFFRACTION. 3.0 Semester Hrs. 
(I) Introduction to point symmetry operations, crystal systems, Bravais 
lattices, point groups, space groups, Laue classes, stereographic 
projections, reciprocal lattice and Ewald sphere constructions, the 
new International Tables for Crystallography, and, finally, how certain 
properties correlate with symmetry. Subsequent to the crystallography 
portion, the course will move into the area of diffraction and will consider 
the primary diffraction techniques (x-rays, electrons and neutrons) used 
to determine the crystal structure of materials. Other applications of 
diffraction such as texture and residual stress will also be considered. 
Prerequisites: Graduate or Senior in good standing. 3 hours lecture, 3 
semester hours.

MTGN511. SPECIAL METALLURGICAL AND MATERIALS 
ENGINEERING PROBLEMS. 1-3 Semester Hr. 
(I) Independent advanced work, not leading to a thesis. This may take the 
form of conferences, library, and laboratory work. Selection of assignment 
is arranged between student and a specific Department faculty-member. 
Prerequisite: Selection of topic. 1 to 3 semester hours. Repeatable for 
credit under different titles.

MTGN512. SPECIAL METALLURGICAL AND MATERIALS 
ENGINEERING PROBLEMS. 1-3 Semester Hr. 
(II) Continuation of MTGN511. Prerequisite: Selection of topic. 1 to 3 
semester hours. Repeatable for credit under different titles.

MTGN514. DEFECT CHEMISTRY AND TRANSPORT PROCESSES IN 
CERAMIC SYSTEMS. 3.0 Semester Hrs. 
(I) Ceramic materials science in the area of structural imperfections, 
their chemistry, and their relation to mass and charge transport; defects 
and diffusion, sintering, and grain growth with particular emphasis 
on the relation of fundamental transport phenomena to sintering and 
microstructure development and control. Prerequisites: DCGN209 or 
MTGN351; MTGN311. 3 hours lecture; 3 semester hours. (Fall of odd 
years only.).

MTGN516. MICROSTRUCTURE OF CERAMIC SYSTEMS. 3.0 
Semester Hrs. 
(II) Analysis of the chemical and physical processes controlling 
microstructure development in ceramic systems. Development of 
the glassy phase in ceramic systems and the resulting properties. 
Relationship of microstructure to chemical, electrical, and mechanical 
properties of ceramics. Application to strengthening and toughening 
in ceramic composite system. Prerequisite: Graduate status. 3 hours 
lecture; 3 semester hours. (Spring of even years only.).

MTGN517. REFRACTORIES. 3.0 Semester Hrs. 
(I) The manufacture, testing, and use of basic, neutral, acid, and specialty 
refractories are presented. Special emphasis is placed on the relationship 
between physical properties of the various refractories and their uses in 
the metallurgical industry. Prerequisite: none. 3 hours lecture; 3 semester 
hours.

MTGN518. PHASE EQUILIBRIA IN CERAMIC SYSTEMS. 3.0 
Semester Hrs. 
(II) Application of one to four component oxide diagrams to ceramic 
engineering problems. Emphasis on refractories and glasses and their 
interaction with metallic systems. Prerequisite: none. 3 hours lecture; 3 
semester hours. (Spring of odd years only.).

MTGN523. APPLIED SURFACE AND SOLUTION CHEMISTRY. 3.0 
Semester Hrs. 
(II) Solution and surface chemistry of importance in mineral and 
metallurgical operations. Prerequisite: none. 3 hours lecture; 3 semester 
hours. (Spring of odd years only.).

MTGN526. GEL SCIENCE AND TECHNOLOGY. 3.0 Semester Hrs. 
An introduction to the science and technology of particulate and 
polymeric gels, emphasizing inorganic systems. Interparticle forces. 
Aggregation, network formation, percolation, and the gel transition. Gel 
structure, rheology, and mechanical properties. Application to solid-liquid 
separation operations (filtration, centrifugation, sedimentation) and to 
ceramics processing. Prerequisite: Graduate Status. 3 hours lecture; 3 
semester hours. (Spring of odd years only.).

MTGN528. EXTRACTIVE METALLURGY OF COPPER, GOLD AND 
SILVER. 3.0 Semester Hrs. 
Practical applications of fundamentals of chemical-processing-of- 
materials to the extraction of gold, silver and copper. Topics covered 
include: History; Ore deposits and mineralogy; Process Selection; 
Hydrometallurgy and leaching; Oxidation pretreatment; Purification 
and recovery; Refinement; Waste treatment; and Industrial examples. 
Prerequisites: ESGN500 and ESGN504. 3 hours lecture; 3 semester 
hours.

MTGN529. METALLURGICAL ENVIRONMENT. 3.0 Semester Hrs. 
(I) Effluents, wastes, and their point sources associated with metallurgical 
processes, such as mineral concentration and values extraction? 
providing for an interface between metallurgical process engineering and 
the environmental engineering areas. Fundamentals of metallurgical unit 
operations and unit processes, applied to waste and effluents control, 
recycling, and waste disposal. Examples which incorporate engineering 
design and cost components are included. Prerequisites: MTGN334. 3 
hours lecture; 3 semester hours.
MTGN530. ADVANCED IRON AND STEELMAKING. 3.0 Semester Hrs.
(I) Physicochemical principles of gas-slag-metal reactions applied to
the reduction of iron ore concentrates and to the refining of liquid iron
to steel. The role of these reactions in reactor design?blast furnace
direct iron smelting furnace, pneumatic steelmaking furnace,
refining slags, deoxidation and degassing, ladle metallurgy, alloying,
and continuous casting of steel. Prerequisite: DCGN209 or MTGN351. 3
hours lecture; 3 semester hours. (Fall of even years only.).

MTGN531. THERMODYNAMICS OF METALLURGICAL AND
MATERIALS PROCESSING. 3.0 Semester Hrs.
(I) Application of thermodynamics to the processing of metals
and materials, with emphasis on the use of thermodynamics in
the development and optimization of processing systems. Focus
areas will include entropy and enthalpy, reaction equilibrium,
solution thermodynamics, methods for analysis and correlation
of thermodynamics data, thermodynamic analysis of phase diagrams,
thermodynamics of surfaces, thermodynamics of defect structures,
and irreversible thermodynamics. Attention will be given to experimental
methods for the measurement of thermodynamic quantities. Prerequisite:
MTGN351. 3 hours lecture; 3 semester hours.

MTGN532. PARTICULATE MATERIAL PROCESSING I -
COMMINUTION AND PHYSICAL SEPARATIONS. 3.0 Semester Hrs.
An introduction to the fundamental principles and design criteria for
the selection and use of standard mineral processing unit operations in
comminution and physical separation. Topics covered include: crushing
(jaw, cone, gyratory), grinding (ball, pebble, rod, SAG, HPGR), screening,
thickening, sedimentation, filtration and hydrocyclones. Two standard
mineral processing plant-design simulation software (MinOCad and JK
SimMet) are used in the course. Prerequisites: Graduate or Senior in
good-standing. 3 hours lecture; 3 semester hours.

MTGN533. PARTICULATE MATERIAL PROCESSING II - APPLIED
SEPARATIONS. 3.0 Semester Hrs.
An introduction to the fundamental principles and design criteria for
the selection and use of standard mineral processing unit operations in
applied separations. Topics covered include: photometric ore sorting,
magnetic separation, dense media separation, gravity separation,
electrostatic separation and flotation (surface chemistry, reagents
selection, laboratory testing procedures, design and simulation). Two standard
mineral processing plant-design simulation software (MinOCad and JK
SimMet) are used in the course. Prerequisites: Graduate or Senior in
good-standing. 3 hours lecture; 3 semester hours.

MTGN534. CASE STUDIES IN PROCESS DEVELOPMENT. 3.0
Semester Hrs.
A study of the steps required for development of a mineral recovery
process. Technical, economic, and human factors involved in bringing a
process concept into commercial production. Prerequisite: none. 3 hours
lecture; 3 semester hours.

MTGN535. PYROMETALLURGICAL PROCESSES. 3.0 Semester Hrs.
(II) Detailed study of a selected few processes, illustrating the application
of the principles of physical chemistry (both thermodynamics and kinetics)
and chemical engineering (heat and mass transfer, fluid flow, plant
design, fuel technology, etc.) to process development. Prerequisite: none.
3 hours lecture; 3 semester hours.

MTGN536. OPTIMIZATION AND CONTROL OF METALLURGICAL
SYSTEMS. 3.0 Semester Hrs.
Application of modern optimization and control theory to the analysis
of specific systems in extractive metallurgy and mineral processing.
Mathematical modeling, linear control analysis, dynamic response, and
indirect optimum seeking techniques applied to the process analysis
of grinding, screening, filtration, leaching, precipitation of metals from
solution, and blast furnace reduction of metals. Prerequisite: none. 3
hours lecture; 3 semester hours.

MTGN537. ELECTROMETALLURGY. 3.0 Semester Hrs.
(II) Electrochemical nature of metallurgical processes. Kinetics
of electrode reactions. Electrochemical oxidation and reduction.
Complex electrode reactions. Mixed potential systems. Cell design
and optimization of electrometallurgical processes. Batteries and fuel
cells. Some aspects of corrosion. Prerequisite: none. 3 hours lecture; 3
semester hours. (Spring of even years only.).

MTGN538. HYDROMETALLURY. 3.0 Semester Hrs.
(II) Kinetics of liquid-solid reactions. Theory of uniformly accessible
surfaces. Hydrometallurgy of sulfide and oxides. Cementation
and hydrogen reduction. Ion exchange and solvent extraction.
Physicochemical phenomena at high pressures. Microbiological
metallurgy. Prerequisite: none. 3 hours lecture; 3 semester hours. (Spring
of odd years only.).

MTGN539. PRINCIPLES OF MATERIALS PROCESSING REACTOR
DESIGN. 3.0 Semester Hrs.
(II) Review of reactor types and idealized design equations for isothermal
conditions. Residence time functions for nonreacting and reacting
species and its relevance to process control. Selection of reactor type
for a given application. Reversible and irreversible reactions in CSTR?s
under nonisothermal conditions. Heat and mass transfer considerations
and kinetics of gas-solid reactions applied to fluo-solids type reactors.
Reactions in packed beds. Scale up and design of experiments.
Brief introduction into drying, crystallization, and bacterial processes.
Examples will be taken from current metallurgical practice. Prerequisite:
none. 3 hours lecture; 3 semester hours. (Spring of odd years only.).

MTGN541. INTRODUCTORY PHYSICS OF METALS. 3.0 Semester
Hrs.
(I) Electron theory of metals. Classical and quantum-mechanical free
electron theory. Electrical and thermal conductivity, thermo electric
effects, theory of magnetism, specific heat, diffusion, and reaction rates.
Prerequisite: MTGN445. 3 hours lecture; 3 semester hours.

MTGN542. ALLOYING THEORY, STRUCTURE, AND PHASE
STABILITY. 3.0 Semester Hrs.
(II) Empirical rules and theories relating to alloy formation. Various alloy
phases and constituents which result when metals are alloyed and
examined in detail. Current information on solid solutions, intermetallic
compounds, eutectics, liquid immiscibility. Prerequisite: MTGN445 or
none. 3 hours lecture; 3 semester hours.

MTGN543. THEORY OF DISLOCATIONS. 3.0 Semester Hrs.
(I) Stress field around dislocation, forces on dislocations, dislocation
reactions, dislocation multiplication, image forces, interaction with point
defects, interpretation of macroscopic behavior in light of dislocation
mechanisms. Prerequisite: none. 3 hours lecture; 3 semester hours. (Fall
of odd years only.).
MTGN544. FORGING AND DEFORMATION MODELING. 3.0 Semester Hrs.
(I) Examination of the forging process for the fabrication of metal components. Techniques used to model deformation processes including slab equilibrium, slip line, upper bound and finite element methods. Application of these techniques to specific aspects of forging and metal forming processes. Prerequisite: none. 3 hours lecture; 3 semester hours. (Fall of odd years only.).

MTGN545. FATIGUE AND FRACTURE. 3.0 Semester Hrs.
(I) Basic fracture mechanics as applied to engineering materials. S-N curves, the Goodman diagram, stress concentrations, residual stress effects, effect of material properties on mechanisms of crack propagation. Prerequisite: none. 3 hours lecture; 3 semester hours. (Fall of odd years only.).

MTGN546. CREEP AND HIGH TEMPERATURE MATERIALS. 3.0 Semester Hrs.
(I) Mathematical description of creep process. Mathematical methods of extrapolation of creep data. Micromechanisms of creep deformation, including dislocation glide and grain boundary sliding. Study of various high temperature materials, including iron, nickel, and cobalt base alloys and refractory metals, and ceramics. Emphasis on phase transformations and microstructure-property relationships. Prerequisite: none. 3 hours lecture; 3 semester hours. (Spring of odd years only.).

MTGN547. PHASE EQUILIBRIA IN MATERIALS SYSTEMS. 3.0 Semester Hrs.
(I) Phase equilibria of unary, binary, ternary, and multicomponent systems, microstructure interpretation, formation-temperature diagrams, determination of phase diagrams. Prerequisite: none. 3 hours lecture; 3 semester hours.

MTGN548. TRANSFORMATIONS IN METALS. 3.0 Semester Hrs.
(I) Surface and interfacial phenomena, order of transformation, grain growth, recovery, recrystallization, solidification, phase transformation in solids, precipitation hardening, spinodal decomposition, martensitic transformation, gas metal reactions. Prerequisite: none. 3 hours lecture; 3 semester hours. (Fall of odd years only.).

MTGN549. CURRENT DEVELOPMENTS IN FERROUS ALLOYS. 3.0 Semester Hrs.
(I) Development and review of solid state transformations and strengthening mechanisms in ferrous alloys. Application of these principles to the development of new alloys and processes such as high strength low alloy steels, high temperature alloys, maraging steels, and case hardening processes. Prerequisite: MTGN548. 3 hours lecture; 3 semester hours.

MTGN551. ADVANCED CORROSION ENGINEERING. 3.0 Semester Hrs.
(I) Advanced topics in corrosion engineering. Case studies and industrial application. Special forms of corrosion. Advanced measurement techniques. Prerequisite: MTGN541. 3 hours lecture; 3 semester hours. (Fall of even years only.).

MTGN552. INORGANIC MATRIX COMPOSITES. 3.0 Semester Hrs.
Introduction to the processing, structure, properties and applications of metal matrix and ceramic matrix composites. Importance of structure and properties of both the matrix and the reinforcement and the types of reinforcement utilized-particulate, short fiber, continuous fiber, and laminates. Emphasis on the development of mechanical properties through control of synthesis and processing parameters. Other physical properties such as electrical and thermal will also be examined. Prerequisite/Co-requisite*: MTGN352, MTGN445/MLGN505*. 3 hours lecture; 3 semester hours. (Summer of even years only.).

MTGN553. STRENGTHENING MECHANISMS. 3.0 Semester Hrs.
(II) Strain hardening in polycrystalline materials, dislocation inter actions, effect of grain boundaries on strength, solid solution hardening, martensitic transformations, precipitation hardening, point defects. Prerequisite: MTGN543 or concurrent enrollment. 3 hours lecture; 3 semester hours. (Spring of even years only.).

MTGN554. OXIDATION OF METALS. 3.0 Semester Hrs.
(II) Kinetics of oxidation. The nature of the oxide film. Transport in oxides. Mechanisms of oxidation. The Oxidation protection of high temperature metal systems. Prerequisite: none. 3 hours lecture; 3 semester hours. (Spring of even years only.).

MTGN555. SOLID STATE THERMODYNAMICS. 3.0 Semester Hrs.
(I) Thermodynamics applied to solid state reactions, binary and ternary phase diagrams, point, line and planar defects, interfaces, and electrochemical concepts. Prerequisite: none. 3 hours lecture; 3 semester hours.

MTGN556. TRANSPORT IN SOLIDS. 3.0 Semester Hrs.
(I) Thermal and electrical conductivity. Solid state diffusion in metals and metal systems. Kinetics of metallurgical reactions in the solid state. Prerequisite: none. 3 hours lecture; 3 semester hours. (Spring of even years only.).

MTGN557. SOLIDIFICATION. 3.0 Semester Hrs.
(I) Heat flow and fluid flow in solidification, thermodynamics of solidification, nucleation and interface kinetics, grain refining, crystal and grain growth, constitutional supercooling, eutectic growth, solidification of castings and ingots, segregation, and porosity. Prerequisite: none. 3 hours lecture; 3 semester hours. (Fall of odd years only.).

MTGN560. ANALYSIS OF METALLURGICAL FAILURES. 3.0 Semester Hrs.
(II) Applications of the principles of physical and mechanical metallurgy to the analysis of metallurgical failures. Nondestructive testing. Fractography. Case study analysis. Prerequisite: none. 3 hours lecture; 3 semester hours. (Spring of odd years only.).

MTGN561. PHYSICAL METALLURGY OF ALLOYS FOR AEROSPACE. 3.0 Semester Hrs.
(i) Review of current developments in aerospace materials with particular attention paid to titanium alloys, aluminum alloys, and metal-matrix composites. Emphasis is on phase equilibria, phase transformations, and microstructure-property relationships. Concepts of innovative processing and microstructural alloy design are included where appropriate. Prerequisite: none. 3 hours lecture; 3 semester hours. (Fall of even years only.).

MTGN564. ADVANCED FORGING AND FORMING. 3.0 Semester Hrs.
(II) Overview of plasticity. Examination and Analysis of working operations of forging, extrusion, rolling, wire drawing and sheet metal forming. Metallurgical structure evolution during working. Laboratory experiments involving metal forming processes. Prerequisites: MTGN445/MLGN505, 2 hours lecture; 3 hours lab, 3 semester hours.

MTGN565. MECHANICAL PROPERTIES OF CERAMICS AND COMPOSITES. 3.0 Semester Hrs.
(I) Mechanical properties of ceramics and ceramic-based composites; brittle fracture of solids; toughening mechanisms in composites; fatigue, high temperature mechanical behavior, including fracture, creep deformation. Prerequisites: MTGN445 or MLGN505. 3 hours lecture; 3 semester hours. (Fall of even years only.).
MTGN569. FUEL CELL SCIENCE AND TECHNOLOGY. 3.0 Semester Hrs.
Equivalent with CBEN569, MEGN569, MLGN569, (I) Investigate fundamentals of fuel-cell operation and electrochemistry from a chemical-thermodynamics and materials-science perspective. Review types of fuel cells, fuel-processing requirements and approaches, and fuel-cell system integration. Examine current topics in fuel-cell science and technology. Fabricate and test operational fuel cells in the Colorado Fuel Cell Center. 3 credit hours.

MTGN570. BIOCOMPATIBILITY OF MATERIALS. 3.0 Semester Hrs.
Introduction to the diversity of biomaterials and applications through examination of the physiologic environment in conjunction with compositional and structural requirements of tissues and organs. Appropriate domains and applications of metals, ceramics and polymers, including implants, sensors, drug delivery, laboratory automation, and tissue engineering are presented. Prerequisites: BIOL110 or equivalent. 3 hours lecture; 3 semester hours.

MTGN571. METALLURGICAL AND MATERIALS ENGINEERING LABORATORY. 1-3 Semester Hr.
Basic instruction in advanced equipment and techniques in the field of extraction, mechanical or physical metallurgy. Prerequisite: Selection. 3 to 9 hours lab; 1 to 3 semester hours.

MTGN572. BIOMATERIALS. 3.0 Semester Hrs.
Equivalent with MLGN572, (I) A broad overview on materials science and engineering principles for biomedical applications with three main topics: 1) The fundamental properties of biomaterials; 2) The fundamental concepts in biology; 3) The interactions between biological systems with exogenous materials. Examples including surface energy and surface modification; protein adsorption; cell adhesion, spreading and migration; biomaterials implantation and acute inflammation; blood-materials interactions and thrombosis; biofilm and biomaterials-related pathological reactions. Basic principles of bio-mimetic materials synthesis and assembly will also be introduced. 3 hours lecture; 3 semester hours.

MTGN573. COMPUTATIONAL MATERIALS. 3.0 Semester Hrs.
(I) Computational Materials is a course designed as an introduction to computational approaches and codes used in modern materials science and engineering, and to provide the hands-on experience in using massively parallel supercomputers and popular materials software packages. The main goal is to provide exposure to students to the growing and highly interdisciplinary field of computational materials science and engineering, through a combination of lectures, hands-on exercises and a series of specifically designed projects. The course is organized to cover different length scales including: atomistic (electronic structure) calculations, molecular dynamics, and phase equilibria modeling. The emerging trends in data driven materials discovery and design are also covered. Particular emphasis is placed on the validation of computational results and recent trends in integrating theory, computations and experiment. Graduate students are expected to successfully complete 4 projects while the undergraduate students are required to finish 3 out of 4 projects. 3 hours lecture; 3 semester hours.

MTGN580. ADVANCED WELDING METALLURGY. 3.0 Semester Hrs.
(I) Weldability of high strength steels, high alloys, and light metals; Welding defects; Phase transformations in weldments; Thermal experience in weldments; Pre- and Post-weld heat treatment; Heat affected zone formation, microstructure, and properties; Consumables development. Prerequisite: none. 3 hours lecture; 3 semester hours. (Spring of odd years only.)

MTGN581. WELDING HEAT SOURCES AND INTERACTIVE CONTROLS. 3.0 Semester Hrs.
(I) The science of welding heat sources including gas tungsten arc, gas metal arc, electron beam and laser. The interaction of the heat source with the workpiece will be explored and special emphasis will be given to using this knowledge for automatic control of the welding process. Prerequisite: Graduate Status. 3 hours lecture; 3 semester hours. (Fall of odd years only.)

MTGN582. MECHANICAL PROPERTIES OF WELDED JOINTS. 3.0 Semester Hrs.
(I) Mechanical metallurgy of heterogeneous systems, shrinkage, distortion, cracking, residual stresses, mechanical testing of joints, size effects, joint design, transition temperature, fracture. Prerequisite: none. 3 hours lecture; 3 semester hours. (Spring of odd years only.)

MTGN583. PRINCIPLES OF NON-DESTRUCTIVE TESTING AND EVALUATION. 3.0 Semester Hrs.
(I) Introduction to testing methods; basic physical principles of acoustics, radiography, and electromagnetism; statistical and risk analysis; fracture mechanics concepts; design decision making, limitations and applications of processes; fitness-for-service evaluations. Prerequisite: Graduate Status. 3 hours lecture; 3 semester hours. (Fall of odd years only.)

MTGN584. NON-FUSION JOINING PROCESSES. 3.0 Semester Hrs.
(I) Joining processes for which the base materials are not melted. Brazing, soldering, diffusion bonding, explosive bonding, and adhesive bonding processes. Theoretical aspects of these processes, as well as the influence of process parameters. Special emphasis to the joining of dissimilar materials using these processes. Prerequisite: none. 3 hours lecture; 3 semester hours. (Spring of even years only.)

MTGN585. DESIGN OF WELDED STRUCTURES AND ASSEMBLIES. 3.0 Semester Hrs.
Introduction to the concepts and analytical practice of designing weldments. Designing for impact, fatigue, and torsional loading. Designing of weldments using overlapping and undermatching criteria. Analysis of combined stresses. Designing of compression members, column bases and splices. Designing of built-up columns, welded plate cylinders, beam-to-column connections, and trusses. Designing for tubular construction. Weld distortion and residual stresses. Joint design. Process consideration in weld design. Welding codes and specifications. Estimation of welding costs. Prerequisite/Co-requisite: MATH225 or equivalent, EGGN320 or equivalent, MTGN475. 3 hours lecture; 3 semester hours. (Summer of odd years only.)

MTGN587. PHYSICAL PHENOMENA OF WELDING AND JOINING PROCESSES. 3.0 Semester Hrs.
(I) Introduction to arc physics, fluid flow in the plasma, behavior of high pressure plasma, cathodic and anodic phenomena, energy generation and temperature distribution in the plasma, arc stability, metal transfer across arc, electron beam welding processes, keyhole phenomena. Ohmic welding processes, high frequency welding, weld pool phenomena. Development of relationships between physics concepts and the behavior of specific welding and joining processes. Prerequisite/Co-requisite: PHGN300, MATH225, MTGN475. 3 hours lecture; 3 semester hours. (Fall of even years only.).
MTGN591. PHYSICAL PHENOMENA OF COATING PROCESSES. 3.0 Semester Hrs.
(I) Introduction to plasma physics, behavior of low pressure plasma, cathodic and anodic phenomena, glow discharge phenomena, glow discharge sputtering, magnetron plasma deposition, ion beam deposition, cathodic arc evaporation, electron beam and laser coating processes. Development of relationships between physics concepts and the behavior of specific coating processes. Prerequisite/ Co-requisite: PHGN300, MATH225. 3 hours lecture; 3 semester hours. (Fall of odd years only.).

MTGN593. NUCLEAR MATERIALS SCIENCE AND ENGINEERING. 3.0 Semester Hrs.
(I) Introduction to the nuclear materials, including the nuclear, physical, thermal, and mechanical properties for nuclear materials, the physical and mechanical processing of nuclear alloys, the effect of nuclear and thermal environments on structural reactor materials and the selection of nuclear and reactor structural materials are described. Selected topics include ceramic science of ceramic nuclear material, ceramic processing of ceramic fuel, nuclear reaction with structural materials, radiation interactions with materials, the aging of nuclear materials, cladding, corrosion and the manufacturing of fuels elements. Relevant issues in the modern fuel cycle will also be introduced including nuclear safety, reactor decommissioning, and environmental impacts. Prerequisites: Graduate or Senior in good-standing. 3 hours lecture, 3 semester hours. (Fall of even years only.).

MTGN598. SPECIAL TOPICS IN METALLURGICAL AND MATERIALS ENGINEERING. 6.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once, but no more than twice for the same course content. Prerequisite: none. Variable credit: 0 to 6 credit hours. Repeatable for credit under different titles.

MTGN599. INDEPENDENT STUDY. 0.5-6 Semester Hr.
(I, II, S) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/ experience and maximums vary by department. Contact the Department for credit limits toward the degree.

MTGN605. ADVANCED TRANSMISSION ELECTRON MICROSCOPY. 2.0 Semester Hrs.
Introduction to transmission electron microscopy techniques and their application to materials characterization. Topics include electron optics, electron-specimen interactions, imaging, diffraction, contrast mechanisms, defect analyses, compositional measurements using energy dispersive x-ray spectroscopy and energy loss spectroscopy, scanning transmission electron microscopy, high angle annular dark field imaging, energy filtered TEM and high resolution phase contrast imaging. Prerequisite: MTGN 505. Co-requisite; MTGN 605L. 2 hours lecture, 2 semester hours.

MTGN605L. ADVANCED TRANSMISSION ELECTRON MICROSCOPY LABORATORY. 1.0 Semester Hr.
Specimen preparation techniques and their application to materials characterization. Topics include electron optics, electron-specimen interactions, imaging, diffraction, contrast mechanisms, defect analyses, compositional measurements using energy dispersive x-ray spectroscopy and energy loss spectroscopy, scanning transmission electron microscopy, high angle annular dark field imaging, energy filtered TEM and high resolution phase contrast imaging. Prerequisite: Concurrent enrollment in MTGN 605. 3 hours lab, 1 semester hour.

MTGN631. TRANSPORT PHENOMENA IN METALLURGICAL AND MATERIALS SYSTEMS. 3.0 Semester Hrs.
Physical principles of mass, momentum, and energy transport. Application to the analysis of extraction metallurgy and other physicochemical processes. Prerequisite: MATH225 and MTGN461 or equivalent. 3 hours lecture; 3 semester hours.

MTGN671. ADVANCED MATERIALS LABORATORY. 1-3 Semester Hr.
(I) Experimental and analytical research in the fields of production, mechanical, chemical, and/or physical metallurgy. Prerequisite: none. 1 to 3 semester hours; 3 semester hours.

MTGN672. ADVANCED MATERIALS LABORATORY. 1-3 Semester Hr.
(II) Continuation of MTGN671. 1 to 3 semester hours.

MTGN696. VAPOR DEPOSITION PROCESSES. 3.0 Semester Hrs.
(II) Introduction to the fundamental physics and chemistry underlying the control of deposition processes for thin films for a variety of applications? wear resistance, corrosion/oxidation resistance, decorative coatings, electronic and magnetic. Emphasis on the vapor deposition process variables rather than the structure and properties of the deposited film. Prerequisites: MTGN351, MTGN461, or equivalent courses. 3 hours lecture; 3 semester hours. (Summer of odd years only.).

MTGN697. MICROSTRUCTURAL EVOLUTION OF COATINGS AND THIN FILMS. 3.0 Semester Hrs.
(I) Introduction to aqueous and non-aqueous chemistry for the preparation of an effective electrolyte; for interpretation of electrochemical principles associated with electrodeposition; surface science to describe surface structure and transport; interphases and structural space charge and double layer concepts; nucleation concepts applied to electrodeposition; electrocrystallization including growth concepts; factors affecting morphology and kinetics; co-deposition of non-Brownian particles; pulse electrodeposition; electrodeposition parameters and control; physical metallurgy of electrodeposits; and, principles associated with vacuum evaporation and sputter deposition. Factors affecting microstructural evolution of vacuum and sputtered deposits; nucleation of vapor and sputtered deposits; modeling of energy interactions during co-deposition; and, Thornton?s model for coating growth. Prerequisite/ co-requisite: MATH225, MTGN351, MTGN352. 3 hours lecture; 3 semester hours. (Summer of even years only.).

MTGN698. SPECIAL TOPICS IN METALLURGICAL AND MATERIALS ENGINEERING. 6.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once, but no more than twice for the same course content. Prerequisite: none. Variable credit: 0 to 6 credit hours. Repeatable for credit under different titles.

MTGN699. INDEPENDENT STUDY. 0.5-6 Semester Hr.
(I, II, S) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/ experience and maximums vary by department. Contact the Department for credit limits toward the degree.
MTGN700. GRADUATE RESEARCH CREDIT: MASTER OF ENGINEERING. 1-6 Semester Hr.
(I, II, S) Research credit hours required for completion of the degree Master of Engineering. Research under the direct supervision of a faculty advisor. Credit is not transferable to any 400, 500, or 600 level courses. However, MTGN 705 credit hours may be transferred, in accordance with the requirements for this (M.E.) degree, by a Master of Science graduate-student who previously accumulated these credit-hours and subsequently opted to change their degree program to a Master of Engineering. Repeatable for credit. Variable: 1 to 6 semester hours.

MTGN707. GRADUATE THESIS / DISSERTATION RESEARCH CREDIT. 1-15 Semester Hr.
(I, II, S) Research credit hours required for completion of a Masters-level thesis or Doctoral dissertation. Research must be carried out under the direct supervision of the student's faculty advisor. Variable class and semester hours. Repeatable for credit.