Civil and Environmental Engineering

Degrees Offered

- Master of Science in Civil and Environmental Engineering
- Doctor of Philosophy in Civil and Environmental Engineering
- Master of Science in Environmental Engineering Science
- Doctor of Philosophy in Environmental Engineering Science
- Graduate Certificate in Environmental Modeling

Program Description

The Civil and Environmental Engineering Department offers MS and PhD graduate degrees in Civil & Environmental Engineering (CEE) and Environmental Engineering Science (EES).

The CEE degree is designed for students who wish to earn a degree to continue the path towards a professional engineering registration. Students entering this degree program should have a BS degree in engineering or will generally need to take engineering prerequisite courses. Within the CEE degree, students complete specified requirements in one of three different emphasis areas: Environmental and Water Engineering, Geotechnical Engineering, and Structural Engineering.

The EES degree has a flexible curriculum that enables students with a BS degree in biology, chemistry, math, physics, geology, engineering, and other technical fields, to tailor a course-work program that best fits their career goals. The MS and PhD degrees in EES have been admitted to the Western Regional Graduate Program (WRGP/WICHE), a recognition that designates this curriculum as unique within the western United States. An important benefit of this designation is that students who are residents from Alaska, Arizona, California, Hawaii, Idaho, Montana, Nevada, New Mexico, North Dakota, Oregon, South Dakota, Utah, Washington, and Wyoming are given the tuition status of Colorado residents.

The specific requirements for the EES & CEE degrees, as well as for the three emphasis areas within the CEE degree, are described in detail under the Major tab.

To achieve the MS degree, students may elect the non-thesis option, based exclusively upon coursework and project activities, or the thesis option, which requires coursework and research conducted under the guidance of a faculty advisor and MS thesis committee. The research is described in a final written thesis that is defended in an oral presentation.

The PhD degree requires students to complete a combination of coursework and original research, under the guidance of a faculty advisor and doctoral committee, that culminates in a significant scholarly contribution (e.g., in the form of published journal articles) to a specialized field in civil and environmental engineering or environmental engineering science. The written thesis must be defended in a public oral presentation before the advisor and thesis committee. The PhD program may build upon one of the CEE or EES MS programs or a comparable MS program at another university. Full-time PhD enrollment is expected although part-time enrollment may be allowed under special circumstances.

Civil and Environmental Engineering

Geotechnical Engineering is concerned with the engineering properties and behavior of natural and engineered geomaterials (soils and rocks), as well as the design and construction of foundations, earth dams and levees, retaining walls, embankments, and underground infrastructure including tunnels. Additionally, mitigation of the impact of natural hazards such as earthquakes and landslides, sustainable use of energy and resources, and reduction of the environmental impacts of human activities require geotechnical engineers who have in-depth understanding of how geomaterials respond to loads, and environmental changes.

Structural Engineering is a study area focused on natural and engineered structures and their behavior under environmental loading. Structural engineers use general principles of structural mechanics to conduct analyses of engineered materials and design structures for civil systems. Designed systems may include bridges, dams, buildings, tunnels, sustainable infrastructure, highways, biomechanical apparatus, sustainable civil engineering materials and numerous other structures and devices.

Environmental and Water Engineering is the application of environmental processes in natural and engineered systems. CEE faculty have expertise in water resource engineering, biosystems engineering, environmental chemistry, environmental microbiology, microbial genomics, wastewater treatment, water treatment, bioremediation, mining treatment processes and systems, remediation processes, biogeochemical reactions in soils, geobiology, membrane processes, humanitarian engineering, social aspects of engineering, and energy recovery from fluids.

Environmental Engineering Science

Environmental Engineering and Science is the application of environmental processes in both natural and engineered systems. CEE faculty have expertise in water resource engineering, biosystems engineering, environmental chemistry, environmental microbiology, microbial genomics, wastewater treatment, water treatment, bioremediation, mining treatment processes and systems, remediation processes, biogeochemical reactions in soils, geobiology, membrane processes, humanitarian engineering, social aspects of engineering, and energy recovery from fluids. The EES degree does not require an undergraduate engineering degree, however, an undergraduate degree in science or engineering is preferable.

Affiliated Interdisciplinary Degrees

Hydrologic Science and Engineering (HSE) offers interdisciplinary programs of study in fundamental hydrologic science and applied hydrology with engineering applications. Our program encompasses groundwater hydrology, surface-water hydrology, vadose-zone hydrology, watershed hydrology, contaminant transport and fate, contaminant remediation, hydrogeophysics, and water policy/law. HSE is part of the Western Regional Graduate Program (WICHE), a recognition that designates the program as unique within the western United States. An important benefit of this designation is that students from several western states are given the tuition status of Colorado residents. These states include Alaska, Arizona, California, Hawaii, Idaho, Montana, Nevada, New Mexico, North Dakota, Oregon, South Dakota, Utah, Washington, and Wyoming.

The graduate degree program in HSE is offered jointly the Departments of Chemistry and Geochemistry, Civil & Environmental Engineering (CEE), Geology and Geological Engineering (GE), Geophysical
Engineering, Humanities, Arts, and Social Sciences (HASS), Mechanical Engineering (ME), Mining Engineering (MN), and Petroleum Engineering (PE). Participating students reside in one of these departments, typically the home department of their advisor.

For more information, see the HSE section of this graduate catalog listed under Interdisciplinary Programs.

Quantitative Biosciences and Engineering (QBE) offers interdisciplinary programs of study in fundamental biosciences with engineering applications. Students may enroll in MS, non-thesis MS and PhD degree programs. As a foundation, our program encompasses core courses in cell biology and biochemistry, applied bioinformatics and systems biology with over 25 electives from biophysics to prosthetic and implant engineering to biomaterials to microfluids to geobiology. The graduate degree program in QBE is offered jointly by the Departments of Applied Mathematics and Statistics (AMS), Chemical and Biological Engineering (CBE), Chemistry and Geochemistry (CH), Civil & Environmental Engineering (CEE), Computer Science (CS), Geology and Geological Engineering (GE), Humanities, Arts, and Social Sciences (HASS), Mechanical Engineering (ME), and Physics (PH). Participating students reside in one of these departments, typically the home department of their advisor.

For more information, see QBE section of this graduate catalog listed under Interdisciplinary Programs.

Underground Construction and Tunnel Engineering (UCTE) is an interdisciplinary field involving civil engineering, geological engineering and mining engineering, as well as mechanical engineering, geophysics, geology and others. UCTE deals with the design, construction, rehabilitation and management of underground space including caverns, shafts and tunnels for commercial, transportation, water and wastewater use. UCTE is a challenging field involving complex soil and rock behavior, groundwater conditions, excavation methods, construction materials, structural design flow, heterogeneity, and very low tolerance for deformation due to existing infrastructure in urban environments. Students pursuing a graduate degree in UCTE will gain a strong and interdisciplinary foundation in these topics. The graduate degree program in UCTE is offered jointly by the Departments of Civil & Environmental Engineering (CEE), Geology & Geological Engineering (GE), and Mining Engineering (MN). UCTE faculty from each department are collectively responsible for the operations of the program. Participating students reside in one of these departments, typically the home department of their advisor.

For more information, see the UCTE section of this graduate catalog listed under Interdisciplinary Programs.

Program Requirements

General Degree Requirements for CEE and EES degrees:

MS Non-Thesis Option: 30 total credits, consisting of coursework (27 hrs.) and either a three credit research based Independent Study (CEEN599) or a designated design course (3 hrs.) and seminar.

MS Thesis Option: 30 total credits, consisting of coursework (24 hrs.), seminar, and research (6 hrs.). Students must also write and orally defend a research thesis.

PhD: 72 total credits, consisting coursework (at least 24 hrs.), seminar, and research (at least 24 hrs.). Students must also successfully complete qualifying examinations, prepare and present a thesis proposal, and write and defend a doctoral thesis. PhD students are also expected to submit the thesis work for publication in scholarly journals.

PhD Qualifying Exam

The student’s Graduate Faculty Advisor in conjunction with the Graduate Thesis Committee administers the PhD Qualifying Exam. It is designed to test some of the attributes considered essential to successful doctoral level scholarship, including foundational knowledge, critical thinking, creativity, and communication skills. The student should take the exam within four semesters of enrollment in the PhD program unless the Graduate Thesis Committee grants an extension.

The conduct of the Qualifying Exam is flexible, but typically involves both written and oral components. The written component might include several take-home questions set by members of the Committee, and a review or research paper on a topic related to the student’s intended research area. The duration of the written exam is set by the Committee, but is expected to be approximately one week. As soon as practicable, following the return of the completed exam materials to the Advisor, a meeting with the student and Committee is scheduled, during which the student may be required to make an oral presentation of the paper review, followed by further oral examination of the other written materials and any other topics deemed appropriate by the Committee. Following the oral component, the student is informed of the result of the examination (pass/fail), and the Advisor informs the Department Head and Graduate Program Manager of the outcome.

In the event the student does not pass the Qualifying Exam, the student may petition the Department Head for a re-examination within six months. If permission is granted, the dates of the re-examination are arranged in conjunction with the Advisor and Committee, and will follow the same guidelines as before.

A second failure of the Qualifying Exam does not disqualify a student for the MS degree but may affect the student’s financial support status, and will result in a recommendation from the CEE Department Head to the Graduate School that the student be dismissed from the CEE or EES PhD program.

PhD Proposal Defense

The student’s Graduate Faculty Advisor, in conjunction with the Graduate Thesis Committee, administers the PhD Proposal defense. The purpose of the thesis proposal is to describe the student’s research in sufficient detail to enable evaluation of its merit and viability. In general, the written proposal will describe the purpose and scope of work, anticipated results, literature review, preliminary findings, proposed research approach and methodologies, along with a schedule. No later than two weeks following submission of the thesis proposal to the Committee, the student and Committee will meet for an oral presentation, during which the student will be questioned about matters immediately relevant to the thesis proposal. The Committee will reach a decision as to whether the proposed research is appropriate and achievable for a CEE or EES PhD degree. Following the meeting, the student is informed of whether the proposal has been approved, and the Advisor informs the Department Head and Graduate Program Manager of the outcome.

In the event the student does not pass the Proposal Defense, he/she may petition the Department Head for a re-examination within six months. If permission is granted, the proposal can be revised for reconsideration by the Committee, following exactly the same guidelines as before.
A second Proposal Defense failure will result in a recommendation from the CEE Department Head to the Graduate School that the student be dismissed from the CEE or ESE PhD program.

A PhD student must obtain approval of his/her thesis proposal by the Committee at least one year before the final thesis defense.

NOTE: Affiliated Interdisciplinary Degree Programs may have a different PhD Qualifying Exam / Proposal Defense procedure.

Mines' Combined Undergraduate / Graduate Degree Program

The Department of CEE combined undergraduate/graduate degree program allows courses at the 400 level and above, for the Mines degree programs listed below, to be used for double counting. Students enrolled in the Mines Combined Undergraduate/Graduate Program may double count up to six hours of credits which were used in fulfilling the requirements of their undergraduate degree at Mines, towards their graduate program. For eligible students whose courses meet these criteria, have been passed with a "B-" or better, and meet all other university, department, division, and program requirements for graduate credit, up to 6 credits can be double counted, per the Mines Graduate Catalog. Undergraduate Degree programs:

- Civil Engineering
- Environmental Engineering
- Chemical & Biological Engineering
- Chemistry
- Geological Engineering
- Geophysics
- Mechanical Engineering
- Petroleum Engineering
- Mining Engineering

Students from other Mines undergraduate degree programs should contact the CEE Department to discuss course options for double counting.

Civil and Environmental Engineering

Prerequisites for CEE Degree:

- Baccalaureate degree: required, preferably in a science or engineering discipline
- College calculus I & II: two semesters required
- College physics: one semester required, two semesters highly recommended
- College chemistry I & II: two semesters required
- College probability & statistics: one semester required
- Statics
- Differential Equations

Emphasis Area Additional Requirements:

- Geotechnical and Structural - Mechanics of Materials, Soil Mechanics, Structural Theory/Structural Analysis
- Environmental and Water - Fluid Mechanics

Required Coursework for CEE Degrees:

CEE MS and PhD students must complete the coursework requirements for at least one emphasis area, comprised of core (required) courses and elective courses.

The student’s advisor and committee (if MS thesis or PhD student) must approve elective courses.

Students must take at least 18 credits within the CEEN prefix. The student may petition the Advisor and/or Thesis committee to allow reduction of the CEEN coursework requirement to a minimum of 15 credits (however, the core course requirements must be met).

Geotechnical Engineering

Geotechnical Core Courses: Students are required to successfully complete three courses from the following core course list plus CEEN590 Civil Engineering seminar.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEEN510</td>
<td>Advanced Soil Mechanics</td>
<td>3.0</td>
</tr>
<tr>
<td>CEEN511</td>
<td>Unsaturated Soil Mechanics</td>
<td>3.0</td>
</tr>
<tr>
<td>CEEN512</td>
<td>Soil Behavior</td>
<td>3.0</td>
</tr>
<tr>
<td>CEEN515</td>
<td>Hillslope Hydrology and Stability</td>
<td>3.0</td>
</tr>
<tr>
<td>CEEN523</td>
<td>Underground Construction Engineering in Soft Ground</td>
<td>4.0</td>
</tr>
<tr>
<td>CEEN519</td>
<td>Risk Assessment in Geotechnical Engineering</td>
<td>3.0</td>
</tr>
<tr>
<td>CEEN506</td>
<td>Finite Element Methods for Engineers</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Structural Engineering

Structural Engineering Core Courses: Students are required to successfully complete three courses from the following core course list plus CEEN590 Civil Engineering seminar.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEEN506</td>
<td>Finite Element Methods for Engineers</td>
<td>3.0</td>
</tr>
<tr>
<td>CEEN530</td>
<td>Advanced Structural Analysis</td>
<td>3.0</td>
</tr>
<tr>
<td>CEEN531</td>
<td>Structural Dynamics</td>
<td>3.0</td>
</tr>
<tr>
<td>CEEN540</td>
<td>Advanced Design of Steel Structures</td>
<td>3.0</td>
</tr>
<tr>
<td>CEEN541</td>
<td>Design of Reinforced Concrete Structures II</td>
<td>3.0</td>
</tr>
<tr>
<td>CEEN542</td>
<td>Timber and Masonry Design</td>
<td>3.0</td>
</tr>
<tr>
<td>CEEN545</td>
<td>Steel Bridge Design</td>
<td>3.0</td>
</tr>
<tr>
<td>CEEN533</td>
<td>Matrix Structural Analysis</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Environmental and Water Engineering

Additional Prerequisites Courses: fluid mechanics.

Environmental & Water Engineering Core Courses: Students are required to successfully complete one course as specified in each of the following areas plus CEEN596 Environmental Seminar:

Chemistry

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEEN550</td>
<td>Principles of Environmental Chemistry</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Physical Transport

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEEN580</td>
<td>Chemical Fate and Transport in the Environment</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Bio Processes
Environmental Engineering Science

Prerequisites for EES degree:
- Baccalaureate degree: required, preferably in a science or engineering discipline
- College calculus I & II: two semesters required
- College physics: one semester required, two semesters highly recommended
- College chemistry I & II: two semesters required
- College probability & statistics: one semester required

Required Curriculum for Environmental Engineering Science (EES) Degree:
The EES curriculum consists of common core and elective courses that may be focused toward specialized areas of emphasis. The common core includes:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEEN550</td>
<td>PRINCIPLES OF ENVIRONMENTAL CHEMISTRY</td>
<td>3.0</td>
</tr>
<tr>
<td>CEEN580</td>
<td>CHEMICAL FATE AND TRANSPORT IN THE ENVIRONMENT</td>
<td>3.0</td>
</tr>
<tr>
<td>CEEN566</td>
<td>MICROBIAL PROCESSES, ANALYSIS AND MODELING</td>
<td>3.0</td>
</tr>
<tr>
<td>or CEEN560</td>
<td>MOLECULAR MICROBIAL ECOLOGY AND THE ENVIRONMENT</td>
<td></td>
</tr>
<tr>
<td>or CEEN562</td>
<td>ENVIRONMENTAL GEOMICROBIOLOGY</td>
<td></td>
</tr>
</tbody>
</table>

Environmental based law or policy course (Commonly
HASS courses) | 3.0 |

Seminar

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEEN596</td>
<td>ENVIRONMENTAL SCIENCE AND ENGINEERING SEMINAR</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Program Requirements

Graduate Certificate in Environmental Modeling (9 credits)
The Environmental modeling Graduate Certificate is an online or residential program focusing on the tools and methods for modeling environmental impacts of systems. Students will learn basic environmental modeling methods such as chemical fate and transport, risk assessment, and systems analysis. The Certificate balances an introduction to environmental issues with a deep dive into environmental modeling. Students will gain perspective on the kinds of problems that can be solved with environmental modeling and will also acquire valuable modeling skills. Moreover, the coursework will cover a broad range of applications, making it relevant for varied scientific and engineering domains.

The 2 required courses in the certificate include:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEEN580</td>
<td>CHEMICAL FATE AND TRANSPORT IN THE ENVIRONMENT</td>
<td>3.0</td>
</tr>
<tr>
<td>CEEN501</td>
<td>LIFE CYCLE ASSESSMENT</td>
<td>3.0</td>
</tr>
</tbody>
</table>

To complete the certificate, students will select one elective from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCI403</td>
<td>INTRODUCTION TO DATA SCIENCE</td>
<td>3.0</td>
</tr>
<tr>
<td>GEGN575</td>
<td>APPLICATIONS OF GEOGRAPHIC INFORMATION SYSTEMS</td>
<td>3.0</td>
</tr>
<tr>
<td>GEOL557</td>
<td>EARTH RESOURCE DATA SCIENCE 1: FUNDAMENTALS</td>
<td>3.0</td>
</tr>
<tr>
<td>MNGN598</td>
<td>GEOSPATIAL BIG DATA ANALYTICS</td>
<td>3.0</td>
</tr>
</tbody>
</table>

CEEN501. LIFE CYCLE ASSESSMENT. 3.0 Semester Hrs.
(II) Which is more sustainable: paper vs plastic, hybrid vs electric vehicles? LCA is a powerful tool used to answer these questions; LCA quantifies the environmental sustainability of a product or process. Students will learn to conduct an LCA during a semester-long project of their choosing. At the end of the course students should be able to sit for the ACLCA professional LCACP certification exam. 3 hours lecture; 3 semester hours.

CEEN505. NUMERICAL METHODS FOR ENGINEERS. 3.0 Semester Hrs.
(S) Introduction to the use of numerical methods in the solution of commonly encountered problems of engineering analysis. Structural/solid analysis of elastic materials (linear simultaneous equations); vibrations (roots of nonlinear equations, initial value problems); natural frequency and beam buckling (eigenvalue problems); interpretation of experimental data (curve fitting and differentiation); summation of pressure distributions (integration); beam deflections (boundary value problems). All course participants will receive source code of all the numerical methods programs published in the course textbook which is coauthored by the instructor. Prerequisite: MATH225. 3 hours lecture; 3 semester hours.

CEEN506. FINITE ELEMENT METHODS FOR ENGINEERS. 3.0 Semester Hrs.
(II) A course combining finite element theory with practical programming experience in which the multidisciplinary nature of the finite element method as a numerical technique for solving differential equations is emphasized. Topics covered include simple structural elements, beams on elastic foundations, solid elasticity, steady state analysis and transient analysis. Some of the applications will lie in the general area of geomechanics, reflecting the research interests of the instructor. Students get a copy of all the source code published in the course textbook. 3 hours lecture; 3 semester hours. Prerequisite: Consent of the instructor.

CEEN510. ADVANCED SOIL MECHANICS. 3.0 Semester Hrs.
Advanced soil mechanics theories and concepts as applied to analysis and design in geotechnical engineering. Topics covered will include seepage, consolidation, shear strength, failure criteria and constitutive models for soil. The course will have an emphasis on numerical solution techniques to geotechnical problems by finite elements and finite differences. Prerequisites: A first course in soil mechanics. 3 Lecture Hours, 3 semester hours. Fall even years.
CEEN511. UNSATURATED SOIL MECHANICS. 3.0 Semester Hrs.
The focus of this course is on soil mechanics for unsaturated soils. It provides an introduction to thermodynamic potentials in partially saturated soils, chemical potentials of adsorbed water in partially saturated soils, phase properties and relations, stress state variables, measurements of soil water suction, unsaturated flow laws, measurement of unsaturated permeability, volume change theory, effective stress principle, and measurement of volume changes in partially saturated soils. The course is designed for seniors and graduate students in various branches of engineering and geology that are concerned with unsaturated soil's hydrologic and mechanics behavior. When this course is cross-listed and concurrent with CEEN412, students that enroll in CEEN511 will complete additional and/or more complex assignments. Prerequisites: CEEN312. 3 hours lecture; 3 semester hours. Spring even years.

CEEN512. SOIL BEHAVIOR. 3.0 Semester Hrs.
The focus of this course is on interrelationships among the composition, fabric, and geotechnical and hydrologic properties of soils that consist partly or wholly of clay. The course will be divided into two parts. The first part provides an introduction to the composition and fabric of natural soils, their surface and pore-fluid chemistry, and the physico-chemical factors that govern soil behavior. The second part examines what is known about how these fundamental characteristics and factors affect geotechnical properties, including the hydrologic properties that govern the conduction of pore fluid and pore fluid constituents, and the geomechanical properties that govern volume change, shear deformation, and shear strength. The course is designed for graduate students in various branches of engineering and geology that are concerned with the engineering and hydrologic behavior of earth systems, including geotechnical engineering, geological engineering, environmental engineering, mining engineering, and petroleum engineering. When this course is cross-listed and concurrent with CEEN411, students that enroll in CEEN512 will complete additional and/or more complex assignments. Prerequisite: CEEN312.

CEEN513. ADVANCED GEOMATERIAL MECHANICS. 4.0 Semester Hrs.
(I) This course deals with the classification and engineering behavior of soil and rock materials as well as materials used in underground construction such as structural steel, aggregates, cement, timber, concrete, shotcrete, accelerators and ground conditioning agents. This course presents an advanced treatment of soil and rock mechanics with focus on the following topics: Index and classification properties of soils, Physical properties and classification of intact rock and rock masses, Fluid flow in soils and rocks, Compressibility of soils and rocks, Failure theories and strength testing of soils and rocks, Shear strength of soils and rocks, Stresses and deformations around underground openings, Laboratory and field methods for evaluation of soil and rock properties, and Analytical and empirical approaches for the design and construction of structures in soil and rock materials. Prerequisites: Undergraduate degree in a pertinent discipline of engineering or equivalent and undergraduate level knowledge of material behavior. Co-requisites: GEGN561. 4 hours lecture; 4 semester hours.

CEEN515. HILLSLOPE HYDROLOGY AND STABILITY. 3.0 Semester Hrs.

CEEN519. RISK ASSESSMENT IN GEOTECHNICAL ENGINEERING. 3.0 Semester Hrs.
Soil and rock are among the most variable of all engineering materials, and as such are highly amenable to a probabilistic treatment. Assessment of the probability of failure or inadequate performance is rapidly gaining ground on the traditional factor of safety approach as a more rational approach to design decision making and risk management. Probabilistic concepts are also closely related to system reliability and Load and Resistance Factor Design (LRFD). When probability is combined with consequences of failure, this leads to the concept of risk. This course is about the theory and application of various tools enabling risk assessment in engineering with an emphasis on geotechnical applications.

CEEN523. UNDERGROUND CONSTRUCTION ENGINEERING IN SOFT GROUND. 4.0 Semester Hrs.
Design and construction of water, wastewater, transportation and utility tunnels, underground space and shafts/excavations in soft ground conditions (soil and weak rock). Addresses geotechnical site characterization, selection of design parameters, stability and deformation analysis of the ground and overlying structures, and construction methods. Includes design of temporary and permanent structural ground support according to ASD (allowable stress design) and LRFD (load resistance factor design) approaches, and design of ground improvement schemes and instrumentation/monitoring approaches to mitigate risk. This course requires post-graduate level knowledge of soil mechanics, fundamental understanding of engineering geology, and an undergraduate level knowledge of structural analysis and design. Prerequisites: CEEN312.

CEEN525. CEMENTITIOUS MATERIALS FOR CONSTRUCTION. 3.0 Semester Hrs.
Cementitious materials, as the most commonly used construction materials, are the main focus of this course and variety of cementitious materials including Portland and non-Portland cements, supplementary cementitious materials, concrete and sprayed concrete (shotcrete), and grouts with their needed additional constituents are covered in this course. This course provides a comprehensive treatment of engineering principles and considerations for proper design, production, placement and maintenance of high quality cementitious materials for infrastructure. In addition, cementitious materials and techniques used for ground improvement purposes are covered in this course. Prerequisite: CEEN311.

CEEN530. ADVANCED STRUCTURAL ANALYSIS. 3.0 Semester Hrs.

CEEN531. STRUCTURAL DYNAMICS. 3.0 Semester Hrs.
An introduction to the dynamics and earthquake engineering of structures is provided. Subjects include the analysis of linear and nonlinear single-degree and multi-degree of freedom structural dynamics. The link between structural dynamics and code-based analysis and designs of structures under earthquake loads is presented. The focus applications of the course include single story and multi-story buildings, and other types of structures that under major earthquake may respond in the inelastic range. Prerequisite: CEEN314.
CEEN533. MATRIX STRUCTURAL ANALYSIS. 3.0 Semester Hrs.
Equivalent with CEEN433.
(I) Focused study on computer oriented methods for solving determinate and indeterminate structures such as trusses and frames. Classical stiffness based analysis method will be introduced with hands-on practice to develop customized matrix analysis program using Matlab. Commercial structural analysis programs will also be introduced during the class and practiced through class projects. When this course is cross-listed and concurrent with CEEN443, students that enroll in CEEN533 will complete additional and/or more complex assignments. Prerequisites: CEEN314 Elementary Structural Theory. 3 lecture hours, 3 semester hours.

CEEN540. ADVANCED DESIGN OF STEEL STRUCTURES. 3.0 Semester Hrs.
The course extends the coverage of steel design to include the topics: slender columns, beam-columns, frame behavior, bracing systems and connections, stability, moment resisting connections, composite design, bolted and welded connections under eccentric loads and tension, and semi-rigid connections. 3 hours lecture; 3 semester hours. Course offered every third semester. Prerequisite: CEEN443 or equivalent.

CEEN541. DESIGN OF REINFORCED CONCRETE STRUCTURES II. 3.0 Semester Hrs.
Advanced problems in the analysis and design of concrete structures, design of slender columns; biaxial bending; two-way slabs; strut and tie models; lateral and vertical load analysis of multistory buildings; introduction to design for seismic forces; use of structural computer programs. Course offered every third semester. Prerequisite: CEEN445.

CEEN542. TIMBER AND MASONRY DESIGN. 3.0 Semester Hrs.
(I) The course develops the theory and design methods required for the use of timber and masonry as structural materials. The design of walls, beams, columns, beam-columns, shear walls, and structural systems are covered for each material. Gravity, wind, snow, and seismic loads are calculated and utilized for design. Connection design and advanced seismic analysis principles are introduced. Prerequisite: CEEN314 or equivalent.

CEEN543. CONCRETE BRIDGE DESIGN BASED ON THE AASHTO LRFD SPECIFICATIONS. 3.0 Semester Hrs.
This course presents the fundamentals of concrete bridge analysis and design including conceptual design, superstructure analysis, AASHTO-LRFD bridge specifications, flat slab bridge design, and pre-stressed concrete bridge design. The course is presented through the complete design of the superstructure of an example bridges. At the conclusion of the course, students will be able to analyze and design simple, but complete concrete bridge superstructures. Prerequisites: CEEN445. Design of Reinforced Concrete Structure. 3 hours lecture; 3 semester hours.

CEEN544. STRUCTURAL PRESERVATION OF EXISTING AND HISTORIC BUILDINGS. 3.0 Semester Hrs.
(I, II) A broad discussion of historic structural systems in the United States, including stone and brick masonry, terra cotta, timber, cast and wrought iron, early steel, and early concrete. Combines research of historic manuals with contemporary analysis. Introduces nondestructive tests for historic structures. Enables prediction of deterioration mechanisms and structural deficiencies. Synthesizes structural retrofit solutions with preservation philosophy and current building codes. Emphasizes the engineer?'s role in stewardship of historic buildings. Prerequisites: CEEN443 and CEEN445. 3 hours lecture and discussion; 3 semester hours.

CEEN545. STEEL BRIDGE DESIGN. 3.0 Semester Hrs.
Students are introduced to, and will develop an understanding of, the theory, analysis, and AASHTO code requirements for the design of steel bridge superstructures. The students will become familiar with bridge types, required loadings, composite action, plate girder design, and the Load and Resistance Factor Design method. The students will recognize the design requirements for a steel bridge superstructure and perform calculations for member loads and the loadings it transfers to the substructure. Course offered every third semester. Prerequisite: CEEN443.

CEEN546. STATISTICAL METHODS FOR RELIABILITY AND ENGINEERING DESIGN. 3.0 Semester Hrs.
(I, II, S) The course will introduce methods and principles that help quantifying the effects of uncertainty in the performance prediction of civil infrastructure systems. Students will learn to apply quantitative risk analysis and modeling approaches relevant to design problems in civil engineering. The course emphasizes that the systematic treatment of uncertainty and risk quantification are essential for adequate engineering planning, design, and operation of systems. The statistical approaches fundamental to engineering design and theory of reliability in structural and underground infrastructure design will be the focus of the course and examples. 3 hours lecture; 3 semester hours.

CEEN550. PRINCIPLES OF ENVIRONMENTAL CHEMISTRY. 3.0 Semester Hrs.
This course provides an introduction to chemical equilibria in natural waters and engineered systems. Topics covered include chemical thermodynamics and kinetics, acid/base chemistry, open and closed carbonate systems, precipitation reactions, coordination chemistry, adsorption and redox reactions. Prerequisites: none. 3 hours lecture; 3 semester hours.

CEEN551. ENVIRONMENTAL ORGANIC CHEMISTRY. 3.0 Semester Hrs.
A study of the chemical and physical interactions which determine the fate, transport and interactions of organic chemicals in aquatic systems, with emphasis on chemical transformations of anthropogenic organic contaminants. Offered in alternate years.

CEEN555. LIMNOLOGY. 3.0 Semester Hrs.
This course covers the natural chemistry, physics, and biology of lakes as well as some basic principles concerning contamination of such water bodies. Topics include heat budgets, water circulation and dispersal, sedimentation processes, organic compounds and their transformations, radionuclide limnochronology, redox reactions, metals and other major ions, the carbon dioxide system, oxygen, nutrients; planktonic, benthic and other communities, light in water and lake modeling. Prerequisite: none. 3 hours lecture; 3 semester hours.

CEEN556. MINING AND THE ENVIRONMENT. 3.0 Semester Hrs.
The course will cover many of the environmental problems and solutions associated with each aspect of mining and ore dressing processes. Mining is a complicated process that differs according to the type of mineral sought. The mining process can be divided into four categories: Site Development; Extraction; Processing; Site Closure. Procedures for hard rock metals mining; coal mining; underground and surface mining; and in situ mining will be covered in relation to environmental impacts. Beneficiation, or purification of metals will be discussed, with cyanide and gold topics emphasized. Site closure will be focused on; stabilization of slopes; process area cleanup; and protection of surface and ground water. After discussions of the mining and beneficiatiion processes themselves, we will look at conventional and innovative measures to mitigate or reduce environmental impact.
CEEN560. MOLECULAR MICROBIAL ECOLOGY AND THE ENVIRONMENT. 3.0 Semester Hrs.
This course explores the diversity of microbiota in a few of the countless environments of our planet. Topics include microbial ecology (from a molecular perspective), microbial metabolism, pathogens, extreme environments, engineered systems, oxidation / reduction of metals, bioremediation of both organics and inorganics, microbial diversity, phylogenetics, analytical tools and bioinformatics. The course can have an integrated laboratory component (depends on timing) for applied molecular microbial ecology to learn microscopy, DNA extraction, PCR, gel electrophoresis, cloning, sequencing, data analysis and bioinformatic applications. Prerequisite: College Biology or CHGC562, CHGC563 or equivalent and enrollment in the CEE graduate program.

CEEN562. ENVIRONMENTAL GEOMICROBIOLOGY. 3.0 Semester Hrs.
(I) This course explores the functional activities and biological significance of microorganisms in geological and engineered systems with a focus on implications to water resources. Topics include: microorganisms as geochemical agents of change, mechanisms and thermodynamics of microbial respiration, applications of analytical, material science and molecular biology tools to the field, and the impact of microbes on the fate and transport of problematic water pollutants. Emphasis will be placed on critical analysis and communication of peer-reviewed literature on these topics. 3 hours lecture and discussion; 3 semester hours.

CEEN564. ENVIRONMENTAL TOXICOLOGY. 3.0 Semester Hrs.
This course provides an introduction to general concepts of ecology, biochemistry, and toxicology. The introductory material will provide a foundation for understanding why, and to what extent, a variety of products and by-products of advanced industrialized societies are toxic. Classes of substances to be examined include metals, coal, petroleum products, organic compounds, pesticides, radioactive materials, and others. Prerequisite: none. 3 hours lecture; 3 semester hours.

CEEN566. MICROBIAL PROCESSES, ANALYSIS AND MODELING. 3.0 Semester Hrs.
Microorganisms facilitate the transformation of many organic and inorganic constituents. Tools for the quantitative analysis of microbial processes in natural and engineered systems will be presented. Stoichiometries, energetics, mass balances and kinetic descriptions of relevant microbial processes allow the development of models for specific microbial systems. Simple analytical models and complex models that require computational solutions will be presented. Systems analyzed include suspended growth and attached growth reactors for municipal and industrial wastewater treatment as well as in-situ bioremediation and bioenergy systems. 3 hours lecture; 3 semester hours.

CEEN570. WATER AND WASTEWATER TREATMENT. 3.0 Semester Hrs.
Unit operations and processes in environmental engineering are discussed in this course, including physical, chemical, and biological treatment processes for water and wastewater. Treatment objectives, process theory, and practice are considered in detail. Prerequisites: none. 3 hours lecture; 3 semester hours.

CEEN571. ADVANCED WATER TREATMENT ENGINEERING AND WATER REUSE. 3.0 Semester Hrs.
This course presents issues relating to theory, design, and operation of advanced water and wastewater treatment unit processes and water reuse systems. Topics include granular activated carbon (GAC), advanced oxidation processes (O3/H2O2), UV disinfection, pressure-driven, current-driven, and osmotic-driven membranes (MF, UF, NF, RO, electrodialysis, and forward osmosis), and natural systems such as riverbank filtration (RBF) and soil-aquifer treatment (SAT). The course is augmented by CEEN571L offering hands-on experience using bench- and pilot-scale unit operations. Prerequisite: CEEN470 or CEEN471 or CEEN570 or CEEN572. 3 hours lecture; 3 semester hours.

CEEN572. ENVIRONMENTAL ENGINEERING PILOT PLANT LABORATORY. 4.0 Semester Hrs.
This course provides an introduction to bench and pilot-scale experimental methods used in environmental engineering. Unit operations associated with water and wastewater treatment for real-world treatment problems are emphasized, including multi-media filtration, oxidation processes, membrane treatment, and disinfection processes. Investigations typically include: process assessment, design and completion of bench- and pilot-scale experiments, establishment of analytical methods for process control, data assessment, upscaling and cost estimation, and project report writing. Projects are conducted both at CSM and at the City of Golden Water Treatment Pilot Plant Laboratory. Prerequisites: CEEN550 and CEEN570. 6 hours laboratory; 4 semester hours.

CEEN573. RECLAMATION OF DISTURBED LANDS. 3.0 Semester Hrs.
Basic principles and practices in reclaiming disturbed lands are considered in this course, which includes an overview of present legal requirements for reclamation and basic elements of the reclamation planning process. Reclamation methods, including recontouring, erosion control, soil preparation, plant establishment, seed mixtures, nursery stock, and wildlife habitat rehabilitation, will be examined. Environmental policy, law and North America / global case studies also provide foundation to understand the field. Practitioners in the field will discuss their experiences.

CEEN575. HAZARDOUS WASTE SITE REMEDIATION. 3.0 Semester Hrs.
This course covers remediation technologies for hazardous waste contaminated sites, including site characteristics and conceptual model development, remedial action screening processes, and technology principles and conceptual design. Institutional control, source isolation and containment, subsurface manipulation, and in situ and ex situ treatment processes will be covered, including unit operations, coupled processes, and complete systems. Case studies will be used and computerized tools for process selection and design will be employed. Prerequisite: CEEN550 and CEEN580. 3 hours lecture; 3 semester hours.
CEEN580. CHEMICAL FATE AND TRANSPORT IN THE ENVIRONMENT. 3.0 Semester Hrs.
(I, II, S) This course describes the environmental behavior of inorganic and organic chemicals in multimedia environments, including water, air, sediment and biota. Sources and characteristics of contaminants in the environment are discussed as broad categories, with some specific examples from various industries. Attention is focused on the persistence, reactivity, and partitioning behavior of contaminants in environmental media. Both steady and unsteady state multimedia environmental models are developed and applied to contaminated sites. The principles of contaminant transport in surface water, groundwater, and air are also introduced. The course provides students with the conceptual basis and mathematical tools for predicting the behavior of contaminants in the environment. 3 hours lecture; 3 semester hours.

CEEN581. WATERSHED SYSTEMS MODELING. 3.0 Semester Hrs.
Introduction to surface water modeling, including rainfall-runoff analysis, input data, uncertainty analysis, lumped and distributed modeling, parameter estimation and sensitivity analysis. Course is heavy on application of models across a range of diverse watersheds for streamflow and snowmelt predictions. In general, theoretical topics are covered in the first meeting each week, followed by hands-on application of concepts and models in the second meeting. Laptops and student Matlab licenses will be required for in-class activities. Prerequisite: none. 3 hours lecture per week; 3 semester hours.

CEEN582. MATHEMATICAL MODELING OF ENVIRONMENTAL SYSTEMS. 3.0 Semester Hrs.
This is an advanced graduate-level course designed to provide students with hands-on experience in developing, implementing, testing, and using mathematical models of environmental systems. The course will examine why models are needed and how they are developed, tested, and used as decision-making or policy-making tools. Typical problems associated with environmental systems, such as spatial and temporal scale effects, dimensionality, variability, uncertainty, and data insufficiency, will be addressed. The development and application of mathematical models will be illustrated using a theme topic such as Global Climate Change, In Situ Bioremediation, or Hydrologic Systems Analysis. Prerequisites: CEEN580 and knowledge of basic statistics and computer programming. 3 hours lecture; 3 semester hours.

CEEN583. SURFACE WATER QUALITY MODELING. 3.0 Semester Hrs.
This course will cover modeling of water flow and quality in rivers, lakes, and reservoirs. Topics will include introduction to common analytical and numerical methods used in modeling surface water flow, water quality, modeling of kinetics, discharge of waste water into surface systems, sedimentation, growth kinetics, dispersion, and biological changes in lakes and rivers. Prerequisites: CEEN480 or CEEN580 recommended. 3 hours lecture; 3 semester hours.

CEEN584. SUBSURFACE CONTAMINANT TRANSPORT. 3.0 Semester Hrs.
This course will investigate physical, chemical, and biological processes governing the transport and fate of contaminants in the saturated and unsaturated zones of the subsurface. Basic concepts in fluid flow, groundwater hydraulics, and transport will be introduced and studied. The theory and development of models to describe these phenomena, based on analytical and simple numerical methods, will also be discussed. Applications will include prediction of extents of contaminant migration and assessment and design of remediation schemes. Prerequisites: CEEN580. 3 hours lecture; 3 semester hours.

CEEN585. FLUID MECHANICS FOR HYDROLOGY. 2.0 Semester Hrs.
This class focuses on the fundamental concepts of engineering fluid mechanics as they relate to the study of hydrology. Topics include fluid statics, dynamics, continuity, energy and momentum, dimensional analysis and open channel flow.

CEEN587. HYDROCHEMICAL AND TRANSPORT PROCESSES. 3.0 Semester Hrs.
Analysis of the chemistry of natural waters in the context of hydrologic systems. The course focuses on sources and dynamic behavior of common natural and anthropogenically introduced solutes of interest, their interactions with minerals, and fate and transport in subsurface and surface environments.

CEEN589. WATER SUSTAINABILITY AND ENERGY PRODUCTION: CURRENT SCIENCE AND PRACTICE. 1.0 Semester Hr.
(I) This course is designed to provide students with valuable communication and professional skills while exploring in depth the topic of joint sustainability of water and unconventional petroleum energy production. A survey of current literature combined with key speakers will introduce the students to the field, while class sessions and practical exercises will help develop important communication, research, and interpersonal skills needed for future professionals. Course curriculum includes specific topics such as speaking/writing for a variety of audiences and critical thinking and analysis. This course is required for all ConocoPhillips - WE2ST Fellows, but is also open to any interested graduate students. 1 hour seminar; 1 semester hour.

CEEN590. CIVIL ENGINEERING SEMINAR. 1.0 Semester Hr.
(I) Introduction to contemporary and advanced methods used in engineering design. Includes, need and problem identification, methods to understand the customer, the market and the competition. Techniques to decompose design problems to identify functions. Ideation methods to produce form from function. Design for T topics. Methods for prototyping, modeling, testing and evaluation of designs. Embedd and detailed design processes. 3 hours lecture; 3 semester hours. Taught on demand. Prerequisite: EGGN491 and EGGN492, equivalent senior design project experience or industrial design experience, graduate standing.

CEEN592. ENVIRONMENTAL LAW. 3.0 Semester Hrs.
Equivalent with CEEN492, PEGN530. This is a comprehensive introduction to U.S. Environmental Law, Policy, and Practice, especially designed for the professional engineer, scientist, planner, manager, consultant, government regulator, and citizen. It will prepare the student to deal with the complex system of laws, regulations, court rulings, policies, and programs governing the environment in the USA. Course coverage includes how our legal system works, sources of environmental law, the major USEPA enforcement programs, state/local matching programs, the National Environmental Policy Act (NEPA), air and water pollution (CAA, CWA), EPA risk assessment training, toxic/hazardous substances laws (RCRA, CERCLA, EPCRA, TSCA, LUST, etc.), and a brief introduction to international environmental law. Prerequisites: none. 3 hours lecture; 3 semester hours.

CEEN594. RISK ASSESSMENT. 3.0 Semester Hrs.
This course evaluates the basic principles, methods, uses, and limitations of risk assessment in public and private sector decision making. Emphasis is on how risk assessments are made and how they are used in policy formation, including discussion of how risk assessments can be objectively and effectively communicated to decision makers and the public. Prerequisite: CEEN592 and one semester of statistics. 3 hours lecture; 3 semester hours.
CEEN595. ANALYSIS OF ENVIRONMENTAL IMPACT. 3.0 Semester Hrs.
Techniques for assessing the impact of mining and other anthropogenic activities on various components of the global ecosystem are considered. The National Environmental Policy Act of 1970 (NEPA) fundamentally changed how the environment is to be considered in any federal decision within the US and has become a model for nations worldwide. Training in the procedures of preparing Environmental Impact Statements (EIS) and Environmental Assessments (EA) are discussed with a particular emphasis on case studies of each, mostly focused on the western US, though all 50 states are considered. Course includes a review of pertinent laws and acts (i.e., NEPA, Endangered Species Act (ESA), Clean Water Act (CWA), Clean Air Act (CAA), Federal Land Policy Management Act (FLPMA), etc.) as well as organic acts that created the National Park Service (NPS), the US Forest Service (USFS) and the Bureau of Land Management (BLM) that deal with environmental impacts. Some field trips.

CEEN596. ENVIRONMENTAL SCIENCE AND ENGINEERING SEMINAR. 0.0 Semester Hrs.
Research presentations covering current research in a variety of environmental topics.

CEEN598. SPECIAL TOPICS IN CIVIL AND ENVIRONMENTAL ENGINEERING. 6.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once, but no more than twice for the same course content. Prerequisite: none. Variable credit: 0 to 6 credit hours. Repeatable for credit under different titles.

CEEN599. INDEPENDENT STUDY. 0.5-6 Semester Hr.
(I, II, S) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: Independent Study? form must be completed and submitted to the Registrar. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/experience and maximums vary by department. Contact the Department for credit limits toward the degree.

CEEN610. INTERNATIONAL ENVIRONMENTAL LAW. 3.0 Semester Hrs.
The course covers an introductory survey of International Environmental Law, including multi-nation treaties, regulations, policies, practices, and politics governing the global environment. It surveys the key issues of sustainable development, natural resources projects, transboundary pollution, international trade, hazardous waste, climate change, and protection of ecosystems, wildlife, and human life. New international laws are changing the rules for engineers, project managers, scientists, teachers, businesspersons, and others both in the US and abroad, and this course is especially designed to keep professionals fully, globally informed and add to their credentials for international work. Prerequisites: CEEN592. 3 hours lecture; 3 semester hours.

CEEN611. MULTIPHASE CONTAMINANT TRANSPORT. 3.0 Semester Hrs.
Principles of multiphase and multicomponent flow and transport are applied to contaminant transport in the unsaturated and saturated zones. Focus is on immiscible phase, dissolved phase, and vapor phase transport of low solubility organic contaminants in soils and aquifer materials. Topics discussed include: capillarity, interphase mass transfer, modeling, and remediation technologies. Prerequisites: CEEN550 or equivalent, CEEN580 or CEEN584 or equivalent. 3 hours lecture; 3 semester hours.

CEEN612. RESEARCH SEMINAR. 0.0 Semester Hrs.
Research credit hours required for completion of a Masters-level thesis or Doctoral dissertation. Research must be carried out under the direct supervision of the student's faculty advisor. Variable class and semester hours. Repeatable for credit.

Department Head
Junko Munakata Maar

Professors
Tzahi Cath
Linda Figueroa
D.V. Griffiths
Marte Gutierrez, James R. Paden Distinguished Chair
Christopher Higgins
Terri Hogue
Tissa Illangasekare, AMAX Distinguished Chair
Amy Landis
Ning Lu
John E. McCray
Michael Mooney, Grewcock Distinguished Chair
Kamini Singha
John R. Spear
Timothy Strathmann

Associate Professors
Eric Anderson
Christopher Bellona
Reza Hedayat
Shiling Pei
Jonathan O. Sharp

Assistant Professors
Lori Tunstall

Teaching Professors
Joseph Crocker
Andres Guerra
Kristoph Kinzli
Susan Reynolds

Teaching Associate Professors
Jeffrey Holley
Hongyan Liu
Alexandra Wayllace

Teaching Assistant Professor
Chelsea Panos

Emeritus Professor
Robert L. Siegrist

Emeritus Associate Professor
Ronald R.H. Cohen

Emeritus Teaching Professor
Candace Sulzbach