Computer Science

Degrees Offered

- Master of Science (Computer Science)
- Doctor of Philosophy (Computer Science)
- Graduate Certificate in CyberSecurity for Cyber Physical Systems
- Post-Baccalaureate Professional Computer Science Certificate

Program Overview

The Computer Science Department offers two online Certificates (they are currently pending approval from the Higher Learning Commission), as well as the degrees Master of Science and Doctor of Philosophy in Computer Science. These degree programs demand academic rigor and depth yet also address real-world problems.

The Department’s research falls into three core fields of Computer Science: (1) Systems (e.g., High Performance Computing, Programming Languages, Cybersecurity, and Networking); (2) Intelligence (e.g., Robotics and Machine Learning); and (3) Algorithms (e.g., Classical, Learning, and Game-Theoretic). Some faculty also do research in CS Education and, in many cases, individual research projects encompass more than one research area.

Research Areas:

ALGORITHMIC ROBOTICS
An interdisciplinary research area drawing from traditional computer science, engineering, and cognitive science. Research themes include artificial intelligence, human-robot interaction, and augmented reality, focusing on integrating computer vision and perception, learning and adaptation, natural language understanding and generation, and decision making into unified robot systems.

APPLIED ALGORITHMS
Research in Applied Algorithms and Data Structures combines classical algorithms research (characterized by the development of elegant algorithms and data structures accompanied by theory that provides mathematical guarantees about performance) and applications research (consisting of the actual development of software accompanied by empirical evaluations on appropriate benchmarks). Applications include cheminformatics and material science, crowdsourcing, data analytics, mobile computing, networking, security and privacy, the smart grid and VLSI design automation.

AUGMENTED REALITY
This area focuses on sensing information about the real world, augmenting visualization of reality by overlaying virtual information on the real world, and enabling user to interact with and digitally manipulate the information.

CS FOR ALL: COMPUTER SCIENCE EDUCATION
This area encompasses research on STEM recruitment and diversity, K-12 computing education, and computing/engineering education at the university level. Current projects include an on-campus computing outreach program tailored for girls across a broad age range; professional development opportunities for CS high school teachers; and incorporating ethics into core and elective computing courses.

CYBERSECURITY
Research includes usable security and privacy in web/mobile/cloud/cyber-physical/IoT/AI systems, vulnerability measurement and analysis, and cybersecurity education.

HIGH PERFORMANCE COMPUTING
Our high performance computing research focuses on using compiler and runtime techniques to optimize Big Data and machine learning applications on heterogeneous systems.

MACHINE LEARNING
Includes research in developing mathematical foundations and algorithm design needed for computers to learn. Focus areas include fundamental research in machine learning and numerical methods, as well as developing novel algorithms for bioinformatics, data mining, computer vision, biomedical image analysis, parallel computing, natural language processing, and data privacy.

NETWORKED SYSTEMS
Research aims to enable emerging wireless applications via networks and systems support, ranging from hardware design to algorithms development and software integration, from credible simulations to actual system deployment and testing.

PROGRAM DETAILS

The Computer Science Department offers a variety of programs:

There are two Certificate programs; one is a Post-Baccalaureate Professional Computer Science Certificate and the second is a Graduate Certificate in CyberSecurity for Cyber Physical Systems. Both are offered online and are pending the accreditation of Mines online learning program by the Higher Learning Commission (HLC).

We also offer the degrees Master of Science and Doctor of Philosophy in Computer Science. The master’s program is designed to prepare candidates for careers in industry or government or for further study at the PhD level; both thesis and non-thesis options are available. The PhD degree program is sufficiently flexible to prepare candidates for careers in industry, government, or academia.

Combined Program: The CS Department also offers combined BS/MS degree programs. These programs offer an expedited graduate school application process and allow students to begin graduate coursework while still finishing their undergraduate degree requirements.

Admission PREREQUISITES

BS+MS Combined

Current Mines undergraduate students are encouraged to apply for the combined program once they have taken five or more Computer Science classes at Mines (classes transferred from other universities will not be considered). This requirement may be met by any 200-level or above course with a CSCI prefix (e.g., CSCI261, CSCI306, CSCI442, etc.), excluding CSCI274, CSCI370, CSCI499.

Students should have an overall GPA of at least 2.5 and a GPA of 3.2 for courses in the major. The calculation of GPA in the major will be based on all 200-level or above CSCI courses except those excluded above (i.e., CSCI274, CSCI370 and CSCI499). If a course is taken multiple times, all of the grades will be included into the GPA calculation. Interested students with a lower GPA must include in their statement of goals/personal statement a section explaining why they should be admitted to the program.
POST-BACCALAUREATE PROFESSIONAL COMPUTER SCIENCE CERTIFICATE

The minimum requirements for admission to the Post-Baccalaureate Professional Computer Science Certificate are:

- Applicants must have a Bachelor's degree, or equivalent, from an accredited institution in an area of study that is not Computer Science.

GRADUATE CERTIFICATE IN CYBERSECURITY FOR CYBER PHYSICAL SYSTEMS

The minimum requirements for admission to the Graduate Certificate in CyberSecurity for Cyber Physical Systems are:

- Undergraduate-level knowledge on data structures, computer organization, algorithms, and operating systems.
- Undergraduate-level knowledge on statistics and discrete mathematics.
- Undergraduate-level skills on the Linux operating system and shell scripts.
- Undergraduate-level programming skills in languages such as C, C++, Python, Java, JavaScript, and HTML/CSS.

MASTERS AND PHD

The minimum requirements for admission to the MS and Ph.D degrees in Computer Science are:

- Applicants must have a Bachelor's degree, or equivalent, from an accredited institution with a grade-point average of 3.0 or better on a 4.0 scale.
- Students are expected to have completed two semesters of calculus, along with courses in object-oriented programming and data structures, and upper level courses in at least three of the following areas: software engineering, numerical analysis, computer architecture, principles of programming languages, analysis of algorithms, and operating systems.
- Competitive Graduate Record Examination scores (verbal reasoning, quantitative reasoning, and analytical writing), with a minimum quantitative reasoning score of 151 or higher (or 650 on the old scale). Applicants who have graduated with a Math, engineering, or science degree from Mines within the past five years are not required to submit GRE scores.
- TOEFL score of 79 or higher (or 550 on the paper-based test or 213 for the computer-based test) for applicants whose native language is not English. In lieu of a TOEFL score, an IELTS score of 6.5 or higher will be accepted.
- For the PhD program, prior research experience is desired but not required.

Admitted Students: The CS Department Graduate Committee may require that an admitted student take undergraduate remedial coursework to overcome technical deficiencies. The committee will decide whether to recommend regular or provisional admission.

Transfer Courses: Graduate level courses taken at other universities for which a grade equivalent to a "B" or better was received will be considered for transfer credit with approval of the Advisor and/or Thesis Committee, and CS Department Head, as appropriate. Transfer credits must not have been used as credit toward a Bachelor degree. For the MS degree, no more than nine credits may transfer. For the PhD degree, up to 24 credit hours may be transferred. In lieu of transfer credit for individual courses, students who enter the PhD program with a thesis-based master's degree from another institution may transfer up to 36 hours in recognition of the course work and research completed for that degree.

400-level Courses: As stipulated by the Mines Graduate School, students may apply toward graduate degree requirements a maximum of nine (9.0) semester hours of department-approved 400-level course work.

Advisor and Thesis Committee: Students must have an Advisor from the CS faculty to direct and monitor their academic plan, research, and independent studies. Advisors must be full-time permanent members of the faculty. In this context, full-time permanent members of the faculty are those that hold the rank of professor, associate professor, assistant professor, research professor, associate research professor or assistant research professor. Upon approval by the Graduate Dean, adjunct faculty, teaching faculty, visiting professors, emeritus professors and off-campus representatives may be designated additional co-advisors. A list of CS faculty by rank is available in the faculty tab of the catalog.

Master of Science (thesis option) students in CS must have at least three members on their Thesis Committee; the Advisor and one other member must be permanent faculty in the CS Department. CS PhD Thesis Committees must have at least four members; the Advisor/co-advisor and two additional members must be permanent faculty in the CS Department, and one member must be outside the departmental faculty and serving as chair of the committee. Students who choose to have a minor program must select a representative from the minor area of study to serve on the Thesis Committee.

Degree Audit and Admission to Candidacy: Master students must complete the Degree Audit form (http://gradschool.mines.edu/Degree-Audit/) by the posted deadline. PhD students need to submit the Degree Audit form (http://gradschool.mines.edu/Degree-Audit/) by the posted deadline and need to submit the Admission to Candidacy form (https://inside.mines.edu/GS-Candidacy-Addendum/) two weeks prior to census day of the semester in which they want to be considered eligible for reduced registration.

Time Limit: As stipulated by the Mines Graduate School, a candidate for a Masters degree must complete all requirements for the degree within five years of the date of admission into the degree program. A candidate for a doctoral degree must complete all requirements for the degree within nine years of the date of admission into the degree program.

PROGRAM REQUIREMENTS

Mines’ Combined Undergraduate/Graduate Degree Program

Students enrolled in the Department of Computer Science Combined Undergraduate/Graduate Program (meaning uninterrupted registration from the time the student earns a Mines undergraduate degree to the time the student begins a Mines graduate degree) may double count up to six hours of credits which were used in fulfilling the requirements of their undergraduate degree at Mines, towards their graduate program. Under the Combined Program, students may count two courses (CSCI406, and/or CSCI442 along with one additional CSCI 400-level course) towards both the undergraduate degree and the graduate degree. These courses must have been passed with a “B-” or better and meet all other University, Department, Division, and Program requirements for graduate credit. One additional 400-level course may
be counted toward the graduate degree, if the course is not counted towards the undergraduate degree. Students selecting the Thesis option will be required to complete 21 hours of coursework and a thesis (9 credit hours). Students selecting the Non-Thesis option will be required to complete 30 credit hours of coursework. There are two required graduate-level courses: CSCI564 (Advanced Architecture) and CSCI561 (Theory of Computation). The remaining courses are all electives except for the double counted courses.

Current Mines undergraduate students are encouraged to apply for the combined program once they have taken five or more Computer Science classes at Mines (classes transferred from other universities will not be considered). This requirement may be met by any 200-level or above course with a CSCI prefix (e.g., CSCI261, CSCI306, CSCI442, etc.), excluding CSCI274, CSCI370, CSCI499. Students should have an overall GPA of at least 2.5 and a GPA of 3.2 for courses in the major. The calculation of GPA in the major will be based on all 200-level or above CSCI courses except those excluded above (i.e., CSCI274, CSCI370 and CSCI499). If a course is taken multiple times, all of the grades will be included into the GPA calculation. Interested students with a lower GPA must include in their statement of goals/personal statement a section explaining why they should be admitted to the program.

Master of Science - Computer Science

The MS degree in Computer Science (Thesis or Non-Thesis option) requires 30 credit hours. Requirements for the thesis MS are 21 hours of coursework plus 9 hours of thesis credit leading to an acceptable Master’s thesis; thesis students are encouraged to find a thesis advisor and form a Thesis Committee by the end of the first year. The non-thesis option consists of two tracks: a Project Track and a Coursework Track. Requirements for the Project Track are 24 hours of coursework plus 6 hours of project credit; requirements for the Coursework Track are 30 hours of coursework. All MS Non-Thesis students must take at least 12 credits of CSCI 500-level coursework, excluding Independent Study credits. The following four core courses are required of all students. Students may choose elective courses from any CSCI graduate course offered by the Department. In addition, up to six credits of elective courses may be taken outside of CSCI. Lastly, a maximum of six Independent Study course units can be used to fulfill degree requirements.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCI406</td>
<td>ALGORITHMS (offered every semester)</td>
<td>3.0</td>
</tr>
<tr>
<td>CSCI442</td>
<td>OPERATING SYSTEMS (offered every semester)</td>
<td>3.0</td>
</tr>
<tr>
<td>CSCI561</td>
<td>THEORY OF COMPUTATION (offered every fall)</td>
<td>3.0</td>
</tr>
<tr>
<td>CSCI564</td>
<td>ADVANCED COMPUTER ARCHITECTURE (offered every spring)</td>
<td>3.0</td>
</tr>
</tbody>
</table>

MS Project Track

Students are required to take six credits of CSCI700 to fulfill the MS project requirement. (It is recommended that the six credits consist of two consecutive semesters of three credits each.) At most six credits of CSCI700 will be counted toward the Masters non-thesis degree. Deliverables include a report and a presentation to a committee of two CS faculty including the Advisor. Deliverables must be successfully completed in the last semester in which the student registers for CSCI700. A student must receive two “pass” votes (i.e., a unanimous vote) to satisfy the project option.

MS Thesis Defense

At the conclusion of the MS (Thesis Option), the student will be required to make a formal presentation and defense of her/his thesis research. A student must “pass” this defense to earn an MS degree.

CS Minor

A CS Minor at the Master’s level requires a minimum of 9 semester hours of CSCI course work, of which, at least 6 semester hours of course work must be at the 500-level or above excluding independent studies and graduate seminars. Pursuant to Graduate School rules all minors must be approved by the student’s advisor, home department head, and a faculty representative of the minor area of study. A minor may not be taken in the student’s major area of study.

Doctor of Philosophy - Computer Science

The PhD degree in Computer Science requires 72 credit hours of coursework and research credits. Required coursework provides a strong background in computer science. A course of study leading to the PhD degree can be designed either for the student who has completed the master’s degree or for the student who has completed the bachelor’s degree. The following five courses are required of all students. Students who have taken equivalent courses at another institution may satisfy these requirements by transfer.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCI406</td>
<td>ALGORITHMS (offered every semester)</td>
<td>3.0</td>
</tr>
<tr>
<td>CSCI442</td>
<td>OPERATING SYSTEMS (offered every semester)</td>
<td>3.0</td>
</tr>
<tr>
<td>CSCI561</td>
<td>THEORY OF COMPUTATION (offered every fall)</td>
<td>3.0</td>
</tr>
<tr>
<td>CSCI564</td>
<td>ADVANCED COMPUTER ARCHITECTURE (offered every spring)</td>
<td>3.0</td>
</tr>
<tr>
<td>SYGN502</td>
<td>INTRODUCTION TO RESEARCH ETHICS</td>
<td>1.0</td>
</tr>
</tbody>
</table>

PhD Qualifying Examination

Students desiring to take the PhD Qualifying Exam must have:

- (if required by your advisor) taken SYGN 501 The Art of Science (previously or concurrently),
- Complete (previously or concurrently) at least four CSCI 500-level courses at Mines (only one CSCI599 is allowed), and
- maintained a GPA of 3.5 or higher in all CSCI 500-level courses taken.

The PhD Qualifying Exam must be taken no later than the fourth semester of study. Exception must be formally requested via email to the Qualifying Exam Committee Chair and approved by the Graduate Committee. The PhD Qualifying Exam is offered once a semester. Each PhD Qualifying Exam comprises of two research areas, chosen by the student. The exam consists of the following steps:

Step 1. A student indicates intention to take the CS PhD Qualifying Exam by choosing two research interest areas.

- The primary test area should be the same as the research area of the student’s (potential) advisor. This exam will be more open-ended research than the second test area. A formal written report and a formal presentation meeting are required for this exam. The outcome of this exam can be part of the student’s dissertation research. In fact, the student is strongly encouraged to create results that can lead to a publication. It is acceptable and encouraged if the advisor is involved to provide suggestions. The student is required to clearly document in the written report how the advisor was involved in the exam.
• The second test area should be from another research area of interest to the student that is (1) supported by faculty within the CS department and (2) different from the student's primary advisor's research area. It is highly recommended that the student choose their secondary test area with an instructor the student has had in one or more courses. This exam will likely be less substantial than the primary exam, e.g., instructions will be more concrete. The purpose of having a second test area is to ensure students can demonstrate both the breadth of knowledge and the capability in doing independent research. Thus, no faculty member is allowed to assist the student in this second exam except for answering clarification questions.

Students must inform the CS Graduate Committee Chair of their intention to take the exam no later than the first class day of the semester.

Step 2. The Graduate Committee Chair creates an exam committee of (at least) four appropriate faculty. The exam committee assigns the student specific tasks with corresponding deliverables for both research areas chosen. The tasks will be some combination from the following list:

• design and evaluate new algorithms or systems for an important research problem, and write a report that summarizes the design and the evaluation results;
• read a set of technical papers, write a summary of the papers read, make a presentation, and answer questions (presentations will be limited to 30-minutes with a hard stop not including Q&A);
• complete a hands-on activity (e.g., develop research software) and write a report that explains the difficulties with the activity and what was learned;
• complete a set of take-home problems;
• write a literature survey (i.e., track down references, separate relevant from irrelevant papers); and

Step 3. The student must complete all deliverables no later than the Monday of Dead Week (11:59pm). Failure to meet the deadline is considered a failed attempt. The submitted report on the deadline is considered to be final, i.e., no update is allowed after the due date/time. Before the oral presentation, the student is not allowed to practice the exam presentation with his/her advisor or research group to get feedback. The student will access exam problems, and submit deliverables through a specified system such as Canvas course/module. Additionally, the specified system will be used to deliver feedback from the committee to the student outlining strengths, weaknesses, recommendations and exam results.

Step 4. Each member of the exam committee makes a recommendation on the deliverables from the following list: strongly support, support, and do not support. To pass the PhD Qualifying Exam, the student must have at least two "strongly supports" and no more than one "do not support". If a student receives two or more "do not support" votes by the committee members, the student fails the exam. All other cases other than Pass or Fail are considered as Conditional Pass.

Conditional Pass Requirements

If a student receives a Conditional Pass, the student is required to take (an) additional test(s). The exam committee will explicitly specify the deadline for the student to take the additional test in the feedback comments to the student. The deadline will likely be at the beginning weeks of the following semester. The additional test(s) may be the whole or part(s) of the original qualifying exam or may be an additional task, as determined by the exam committee. If the student passes the assigned additional test, the Conditional Pass will be converted into a Pass; otherwise, the outcome of the qualifying exam will be a Fail.

The student is informed of the qualifying exam decision (Pass, Fail, or Conditional Pass) no later than the Monday after finals week. The student is informed of the outcome of a Conditional Pass test within two weeks after the test. A student can only fail the exam one time. If a second failure occurs, the student has unsatisfactory academic performance that results in an immediate, mandatory dismissal of the graduate student from the PhD program.

PhD Thesis Proposal: After passing the Qualifying Examination, the PhD student is allowed up to 18 months to prepare a written Thesis Proposal and present it formally to the student’s Thesis Committee and other interested faculty.

Admission to Candidacy: In addition to the Graduate School requirements, full-time PhD students must complete the following requirements within two calendar years of enrolling in the PhD program.

• Have a Thesis Committee appointment form on file in the Graduate Office:
• Have passed the PhD Qualifying Exam demonstrating adequate preparation for, and satisfactory ability to conduct doctoral research.

PhD Thesis Defense: At the conclusion of the student’s PhD program, the student will be required to make a formal presentation and defense of her/his thesis research. A student must “pass” this defense to earn a PhD degree.

CS Minor

A CS Minor at the PhD level requires a minimum of 12 semester hours of CSCi course work, of which, 9 semester hours of course work must be at the 500-level or above excluding independent studies and graduate seminars. Pursuant to Graduate School rules all minors must be approved by the student’s advisor, home department head, and a faculty representative of the minor area of study. A minor may not be taken in the student’s major area of study.

GRADUATE CERTIFICATE IN CYBERSECURITY FOR CYBER PHYSICAL SYSTEMS

Program Requirements:
The program consists of four online undergraduate-level courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCI560</td>
<td>FUNDAMENTALS OF COMPUTER NETWORKS</td>
<td>3.0</td>
</tr>
<tr>
<td>CSCI574</td>
<td>THEORY OF CRYPTOGRAPHY</td>
<td>3.0</td>
</tr>
<tr>
<td>CSCI585</td>
<td>INFORMATION SECURITY PRIVACY</td>
<td>3.0</td>
</tr>
<tr>
<td>CSCI587</td>
<td>CYBER PHYSICAL SYSTEMS SECURITY</td>
<td>3.0</td>
</tr>
<tr>
<td>Total Semester Hrs</td>
<td></td>
<td>12.0</td>
</tr>
</tbody>
</table>
Post-Baccalaureate Professional Computer Science Certificate

Program Requirements:
The program consists of five online undergraduate-level courses:

- CSCI261 PROGRAMMING CONCEPTS 3.0
- CSCI262 DATA STRUCTURES 3.0
- CSCI303 INTRODUCTION TO DATA SCIENCE 3.0
- CSCI306 SOFTWARE ENGINEERING 3.0
- CSCI406 ALGORITHMS 3.0

Total Semester Hrs 15.0

Courses

CSCI507. INTRODUCTION TO COMPUTER VISION. 3.0 Semester Hrs.
Equivalent with CSCI437,CSCI452,EENG507,EENG512.
(I) Computer vision is the process of using computers to acquire images, transform images, and extract symbolic descriptions from images. This course provides an introduction to this field, covering topics in image formation, feature extraction, location estimation, and object recognition. Design ability and hands-on projects will be emphasized, using popular software tools. The course will be of interest both to those who want to learn more about the subject and to those who just want to use computer imaging techniques. Prerequisites: Undergraduate level knowledge of linear algebra, statistics, and a programming language. 3 hours lecture; 3 semester hours.

CSCI508. ADVANCED TOPICS IN PERCEPTION AND COMPUTER VISION. 3.0 Semester Hrs.
Equivalent with EENG508.
(II) This course covers advanced topics in perception and computer vision, emphasizing research advances in the field. The course focuses on structure and motion estimation, general object detection and recognition, and tracking. Projects will be emphasized, using popular software tools. Prerequisites: EENG507 or CSCI507. 3 hours lecture; 3 semester hours.

CSCI522. INTRODUCTION TO USABILITY RESEARCH. 3.0 Semester Hrs.
(I) An introduction to the field of Human-Computer Interaction (HCI). Students will review current literature from prominent researchers in HCI and will discuss how the researchers' results may be applied to the students' own software design efforts. Topics include usability testing, ubiquitous computing user experience design, cognitive walkthrough and talk-aloud testing methodologies. Students will work in small teams to develop and evaluate an innovative product or to conduct an extensive usability analysis of an existing product. Project results will be reported in a paper formatted for submission to an appropriate conference (UbiComp, SIGCSE, CHI, etc.). Prerequisite: CSCI 261 or equivalent. 3 hours lecture, 3 semester hours.

CSCI532. ROBOT ETHICS. 3.0 Semester Hrs.
(II) This course explores ethical issues arising in robotics and human-robot interaction through philosophical analysis, scientific experimentation, and algorithm design. Topics include case studies in lethal autonomous weapon systems, autonomous cars, and social robots, as well as higher-level concerns including economics, law, policy, and discrimination. Graduate enrollees will additionally participate in and report on the results of empirical and computational robot ethics research, with the goal of developing publishable works. Prerequisite: Graduate student standing.

CSCI534. ROBOT PLANNING AND MANIPULATION. 3.0 Semester Hrs.
An introduction to planning in the context of robotics covering symbolic and motion planning approaches. Symbolic computation, symbolic domains, and efficient algorithms for symbolic planning; Robot kinematics, configuration spaces, and algorithms for motion planning. Applications of planning will focus on manipulation problems using robot arms. Prerequisite: CSCI404 or graduate student standing.

CSCI536. HUMAN-ROBOT INTERACTION. 3.0 Semester Hrs.
Human-Robot Interaction is an interdisciplinary field at the intersection of Computer Science, Robotics, Psychology, and Human Factors, that seeks to answer a broad set of questions about robots designed to interact with humans (e.g., assistive robots, educational robots, and service robots), such as: (1) How does human interaction with robots differ from interaction with other people? (2) How does the appearance and behavior of a robot change how humans perceive, trust, and interact with that robot? And (3) How can we design and program robots that are natural, trustworthy, and effective? Accordingly, In this course, students will learn (1) how to design interactive robots, (2) the algorithmic foundations of interactive robots; and (3) how to evaluate interactive robots. To achieve these learning objectives, students will read and present key papers from the HRI literature, complete an individual final project tailored to their unique interests and skillsets, and complete a group project in which they will design, pilot, and evaluate novel HRI experiments, with in-class time expected to be split between lecture by the instructor, presentations by students, and either collaborative active learning activities or discussions with researchers in the field. Prerequisite: Data Structures, Probability and Statistics or equivalent.

CSCI542. SIMULATION. 3.0 Semester Hrs.
(I) Advanced study of computational and mathematical techniques for modeling, simulating, and analyzing the performance of various systems. Simulation permits the evaluation of performance prior to the implementation of a system; it permits the comparison of various operational alternatives without perturbing the real system. Topics to be covered include simulation techniques, random number generation, Monte Carlo simulations, discrete and continuous stochastic models, and point/interval estimation. Offered every other year. Prerequisite: CSCI 262 (or equivalent) and MATH 323 (or MATH 530 or equivalent). 3 hours lecture; 3 semester hours.

CSCI544. ADVANCED COMPUTER GRAPHICS. 3.0 Semester Hrs.
Equivalent with MATH544.
This is an advanced computer graphics course in which students will learn a variety of mathematical and algorithmic techniques that can be used to solve fundamental problems in computer graphics. Topics include global illumination, GPU programming, geometry acquisition and processing, point based graphics and non-photorealistic rendering. Students will learn about modern rendering and geometric modeling techniques by reading and discussing research papers and implementing one or more of the algorithms described in the literature.
CSCI546. WEB PROGRAMMING II. 3.0 Semester Hrs.
(I) This course covers methods for creating effective and dynamic web pages, and using those sites as part of a research agenda related to Humanitarian Engineering. Students will review current literature from the International Symposium on Technology and Society (ISTAS), American Society for Engineering Education (ASEE), and other sources to develop a research agenda for the semester. Following a brief survey of web programming languages, including HTML, CSS, JavaScript and Flash, students will design and implement a website to meet their research agenda. The final product will be a research paper which documents the students’ efforts and research results. Prerequisite: CSCI 262. 3 hours lecture; 3 semester hours.

CSCI547. SCIENTIFIC VISUALIZATION. 3.0 Semester Hrs.
Equivalent with MATH547.
Scientific visualization uses computer graphics to create visual images which aid in understanding of complex, often massive numerical representation of scientific concepts or results. The main focus of this course is on techniques applicable to spatial data such as scalar, vector and tensor fields. Topics include volume rendering, texture based methods for vector and tensor field visualization, and scalar and vector field topology. Students will learn about modern visualization techniques by reading and discussing research papers and implementing one of the algorithms described in the literature.

CSCI555. GAME THEORY AND NETWORKS. 3.0 Semester Hrs.
Equivalent with CSCI455.
(II) An introduction to fundamental concepts of game theory with a focus on the applications in networks. Game theory is the study that analyzes the strategic interactions among autonomous decision-makers. Originated from economics, influenced many areas in Computer Science, including artificial intelligence, e-commerce, theory, and security and privacy. Provides tools and knowledge for modeling and analyzing real-world problems. Prerequisites: CSCI406 Algorithms. 3 hours lecture; 3 semester hours.

CSCI560. FUNDAMENTALS OF COMPUTER NETWORKS. 3.0 Semester Hrs.
(II) This fully online course provides an introduction to fundamental concepts in the design and implementation of computer communication networks, their protocols, and applications. Topics include overview of network architectures, applications, network programming interfaces (e.g., sockets), transport, congestion, routing, and data link protocols, addressing, local area networks, wireless networks, and network security. Examples are drawn primarily from the Internet (e.g., TCP, UDP, and IP) protocol suite. Prerequisite: CSCI442. 3 hours lecture; 3 semester hours.

CSCI561. THEORY OF COMPUTATION. 3.0 Semester Hrs.
(I) An introduction to abstract models of computation and computability theory; including finite automata (finite state machines), pushdown automata, and Turing machines. Language models, including formal languages, regular expressions, and grammars. Decidability and undecidability of computational problems. 3 hours lecture; 3 semester hours. Prerequisite: CSCI406.

CSCI562. APPLIED ALGORITHMS AND DATA STRUCTURES. 3.0 Semester Hrs.
(II) Industry competitiveness in certain areas is often based on the use of better algorithms and data structures. The objective of this class is to survey some interesting application areas and to understand the core algorithms and data structures that support these applications. Application areas could change with each offering of the class, but would include some of the following: VLSI design automation, computational biology, mobile computing, computer security, data compression, web search engines, geographical information systems. Prerequisite: MATH/CSCI406. 3 hours lecture; 3 semester hours.

CSCI563. PARALLEL COMPUTING FOR SCIENTISTS AND ENGINEERS. 3.0 Semester Hrs.
(I) Students are taught how to use parallel computing to solve complex scientific problems. They learn how to develop parallel programs, how to analyze their performance, and how to optimize program performance. The course covers the classification of parallel computers, shared memory versus distributed memory machines, software issues, and hardware issues in parallel computing. Students write programs for state of the art high performance supercomputers, which are accessed over the network. Prerequisite: Programming experience in C. 3 hours lecture; 3 semester hours.

CSCI564. ADVANCED COMPUTER ARCHITECTURE. 3.0 Semester Hrs.
The objective of this course is to gain a detailed understanding about the options available to a computer architect when designing a computer system along with quantitative justifications for the options. All aspects of modern computer architectures including instruction sets, processor design, memory system design, storage system design, multiprocessors, and software approaches will be discussed. Prerequisite: CSCI341. 3 hours lecture; 3 semester hours.

CSCI565. DISTRIBUTED COMPUTING SYSTEMS. 3.0 Semester Hrs.
(II) This course discusses concepts, techniques, and issues in developing distributed systems in large scale networked environment. Topics include theory and systems level issues in the design and implementation of distributed systems. Prerequisites: CSCI 442 or equivalent. 3 hours of lecture; 3 semester hours.

CSCI568. DATA MINING. 3.0 Semester Hrs.
(II) This course is an introductory course in data mining. It covers fundamentals of data mining theories and techniques. We will discuss association rule mining and its applications, overview of classification and clustering, data preprocessing, and several application-specific data mining tasks. We will also discuss practical data mining using a data mining software. Project assignments include implementation of existing data mining algorithms, data mining with or without data mining software, and study of data mining related research issues. Prerequisite: CSCI262. 3 hours lecture; 3 semester hours.

CSCI571. ARTIFICIAL INTELLIGENCE. 3.0 Semester Hrs.
(I) Artificial Intelligence (AI) is the subfield of computer science that studies how to automate tasks for which people currently exhibit superior performance over computers. Historically, AI has studied problems such as machine learning, language understanding, game playing, planning, robotics, and machine vision. AI techniques include those for uncertainty management, automated theorem proving, heuristic search, neural networks, and simulation of expert performance in specialized domains like medical diagnosis. This course provides an overview of the field of Artificial Intelligence. Particular attention will be paid to learning the LISP language for AI programming. Prerequisite: CSCI262. 3 hours lecture; 3 semester hours.
CSCI572. COMPUTER NETWORKS II. 3.0 Semester Hrs.
This course explores how computer networking is evolving to support new environments, and challenges in building networked systems that are simultaneously highly robust, efficient, flexible, and secure. Detailed topics include wireless and mobile networks, multimedia networking, and network security. In addition, recent research and developments are also studied, which include mobile sensing, Internet of Things (IoT), social computing and networks, mobile ad-hoc networks, wireless sensor networks, software defined networking, and future Internet architecture. Prerequisite: CSCI262 or equivalent or instructor consent.

CSCI573. HUMAN-CENTERED ROBOTICS. 3.0 Semester Hrs.
Equivalent with CSCI473.
(I) Human-centered robotics is an interdisciplinary area that bridges research and application of methodology from robotics, machine vision, machine learning, human-computer interaction, human factors, and cognitive science. Students will learn about fundamental research in human-centered robotics, as well as develop computational models for robotic perception, internal representation, robotic learning, human-robot interaction, and robot cognition for decision making. Students in CSCI 473 will be able to model and analyze human behaviors geared toward human-robot interaction applications. They will also be able to implement a working system using algorithms learnt to solve a given problem in human-centered robotics application. Students in CSCI 573 will get a more in-depth study into the theory of the algorithms. They will be able to compare the different algorithms to select the most appropriate one that can solve a specific problem. Prerequisites: CSCI262 and MATH201. 3 hours lecture; 3 semester hours.

CSCI574. THEORY OF CRYPTOGRAPHY. 3.0 Semester Hrs.
Equivalent with MATH574.
(I) Students will draw upon current research results to design, implement and analyze their own computer security or other related cryptography projects. The requisite mathematical background, including relevant aspects of number theory and mathematical statistics, will be covered in lecture. Students will be expected to review current literature from prominent researchers in cryptography and to present their findings to the class. Particular focus will be given to the application of various techniques to real-life situations. The course will also cover the following aspects of cryptography: symmetric and asymmetric encryption, computational number theory, quantum encryption, RSA and discrete log systems, SHA, steganography, chaotic and pseudo-random sequences, message authentication, digital signatures, key distribution and key management, and block ciphers. Prerequisite: CSCI262. 3 hours lecture, 3 semester hours.

CSCI575. MACHINE LEARNING. 3.0 Semester Hrs.
(I) The goal of machine learning research is to build computer systems that learn from experience and that adapt to their environments. Machine learning systems do not have to be programmed by humans to solve a problem; instead, they essentially program themselves based on examples of how they should behave, or based on trial and error experience trying to solve the problem. This course will focus on the methods that have proven valuable and successful in practical applications. The course will also contrast the various methods, with the aim of explaining the situations in which each is most appropriate. 3 hours lecture; 3 semester hours. Prerequisite: CSCI262, MATH201, MATH332.

CSCI576. WIRELESS SENSOR SYSTEMS. 3.0 Semester Hrs.
With the advances in computational, communication, and sensing capabilities, large scale sensor-based distributed environments are becoming a reality. Sensor enriched communication and information infrastructures have the potential to revolutionize almost every aspect of human life benefitting application domains such as transportation, medicine, surveillance, security, defense, science and engineering. Such a distributed infrastructure must integrate networking, embedded systems, distributed computing and data management technologies to ensure seamless access to data dispersed across a hierarchy of storage, communication, and processing units, from sensor devices where data originates to large databases where the data generated is stored and/or analyzed. Prerequisite: CSCI406, CSCI446, CSCI471. 3 hours lecture; 3 semester hours.

CSCI578. BIOINFORMATICS. 3.0 Semester Hrs.
Bioinformatics is a blend of multiple areas of study including biology, data science, mathematics and computer science. The field focuses on extracting new information from massive quantities of biological data and requires that scientists know the tools and methods for capturing, processing and analyzing large data sets. Bioinformatics scientists are tasked with performing high-throughput, next-generation sequencing. They analyze DNA sequence alignment to find mutations and anomalies and understand the impact on cellular processes. The bioinformatician uses software to analyze protein structure and its impact on cell function. Learning how to design experiments and perform advanced statistical analysis is essential for anyone interested in this field, which is main goal of this course.

CSCI580. ADVANCED HIGH PERFORMANCE COMPUTING. 3.0 Semester Hrs.
This course provides students with knowledge of the fundamental concepts of high performance computing as well as hands-on experience with the core technology in the field. The objective of this class is to understand how to achieve high performance on a wide range of computational platforms. Topics will include sequential computers including memory hierarchies, shared memory computers and multicores, distributed memory computers, graphical processing units (GPUs), cloud and grid computing, threads, OpenMP, message passing (MPI), CUDA (for GPUs), parallel file systems, and scientific applications. 3 hours lecture; 3 semester hours.

CSCI581. QUANTUM PROGRAMMING. 3.0 Semester Hrs.
This course serves as an introduction to programming quantum computers. Students will receive an in depth education in quantum algorithms and their design, and then break into teams to learn the API of a commercially available quantum computing system. They will use this system to write and test simple quantum algorithms, and debug their code to improve its performance against noise and other error sources. Prerequisite: PHGN519.

CSCI585. INFORMATION SECURITY PRIVACY. 3.0 Semester Hrs.
(I) This course provides an introduction to the principles and best practices in information security and privacy. Lectures will include basic concepts of information security and privacy, fundamental security design principles, major topics in security and privacy, essential knowledge and skills, risk assessment and mitigation, policy development, and so on. In the classroom, students will also present and discuss a list of recent or classic research papers corresponding to the major topics in security and privacy. Outside of the classroom, students will work on homework assignments, security lab exercises, quizzes, research paper summaries, and a course project. Prerequisite: CSCI262, CSCI341. 3 hours lecture; 3 semester hours.
CSCI587. CYBER PHYSICAL SYSTEMS SECURITY. 3.0 Semester Hrs.
(II) This course aims to build a solid foundation for students to identify, analyze, and evaluate real-world security and privacy problems in Cyber Physical Systems, as well as to design and develop secure and usable solutions for addressing these problems. It focuses on the important security and privacy research topics in representative Cyber Physical Systems such as wireless sensor networks, smart grids, autonomous automotive systems, and robotic systems. It also includes the discussion of the protection of the nation's critical infrastructures such as Food, Health, Water, Energy, Finance, Communication, Manufacturing, Government, and Transportation. The format of the course includes introductory discussions, research paper reading, summaries, and discussions, as well as research projects. 3 hours lecture; 3 semester hours.

CSCI598. SPECIAL TOPICS. 6.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once, but no more than twice for the same course content. Prerequisite: none. Variable credit: 0 to 6 credit hours. Repeatable for credit under different titles.

CSCI599. INDEPENDENT STUDY. 0.5-6 Semester Hr.
(I, II, S) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: Independent Study? form must be completed and submitted to the Registrar. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/experience and maximums vary by department. Contact the Department for credit limits toward the degree.

CSCI691. GRADUATE SEMINAR. 1.0 Semester Hr.
Presentation of latest research results by guest lecturers, staff, and advanced students. Prerequisite: none. 1 hour seminar; 1 semester hour. Repeatable for credit to a maximum of 12 hours.

CSCI692. GRADUATE SEMINAR. 1.0 Semester Hr.
Equivalent with MATH692.
Presentation of latest research results by guest lecturers, staff, and advanced students. Prerequisite: none. 1 hour seminar; 1 semester hour. Repeatable for credit to a maximum of 12 hours.

CSCI693. WAVE PHENOMENA SEMINAR. 1.0 Semester Hr.
Students will probe a range of current methodologies and issues in seismic data processing, with emphasis on underlying assumptions, implications of these assumptions, and implications that would follow from use of alternative assumptions. Such analysis should provide seed topics for ongoing and subsequent research. Topic areas include: Statistics estimation and compensation, deconvolution, multiple suppression, suppression of other noises, wavelet estimation, imaging and inversion, extraction of stratigraphic and lithologic information, and correlation of surface and borehole seismic data with well log data. Prerequisite: none. 1 hour seminar; 1 semester hour.

CSCI698. SPECIAL TOPICS. 6.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once, but no more than twice for the same course content. Prerequisite: none. Variable credit: 0 to 6 credit hours. Repeatable for credit under different titles.

CSCI699. INDEPENDENT STUDY. 0.5-6 Semester Hr.
(I, II, S) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: Independent Study? form must be completed and submitted to the Registrar. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/experience and maximums vary by department. Contact the Department for credit limits toward the degree.

CSCI700. MASTERS PROJECT CREDITS. 1-6 Semester Hr.
(I, II, S) Project credit hours required for completion of the non-thesis Master of Science degree in Computer Science (Project Option). Project under the direct supervision of a faculty advisor. Credit is not transferable to any 400, 500, or 600 level courses. Repeatable for credit.

CSCI707. GRADUATE THESIS / DISSERTATION RESEARCH CREDIT. 1-15 Semester Hr.
(I, II, S) GRADUATE THESIS/DISSERTATION RESEARCH CREDIT Research credit hours required for completion of a Masters-level thesis or Doctoral dissertation. Research must be carried out under the direct supervision of the student's faculty advisor. Variable class and semester hours. Repeatable for credit.

Professor and Department Head
Tracy Camp

Professors
Qi Han
Dinesh Mehta

Associate professors
William Hoff
Hua Wang
Bo Wu
Dejun Yang
Chuan Yue

Assistant professors
Mehmet Belviranli
Neil Dantam
Jedidiah McClurg
Thomas Williams
Hao Zhang

Teaching Professors
Vibhuti Dave
Christopher Painter-Wakefield

Teaching Associate Professors
Wendy Fisher, Assistant Department Head
Jeffrey Paone
Professor of Practice
Mark Baldwin

Emeritus Teaching Professor
Cyndi Rader