Quantitative Biosciences and Engineering

Degrees Offered

- Master of Science in Quantitative Biosciences and Engineering (Non-Thesis)
- Master of Science in Quantitative Biosciences and Engineering (Thesis)
- Doctor of Philosophy in Quantitative Biosciences and Engineering

Program Description

The graduate program in quantitative biosciences and engineering brings together faculty across the Mines campus working on diverse areas of biology to educate students, with at least a Bachelor of Science degree in engineering or science, in the diverse field of biology. Biology deals broadly with life on this planet, the human organism and its health, and harnessing biological processes to produce fuels, chemicals, and consumer products. Thus, biology in general and human health and well-being in particular are important application areas for virtually all other areas of science, technology and engineering. This is reflected in the fact that any academic discipline exists today with a bio-prefix, such as biophysics, biochemistry, bioengineering, mathematical biology, computational biology, systems biology, structural biology, biomedicine, biomaterials, biomechanics, bioinformatics, biological chemistry, geobiology, environmental biology, microbiology to name just a few. Similarly, health is included in many labels, e.g. digital healthcare, health economics, health informatics. Educating students at the interfaces of biology, health and engineering with other disciplines is a primary goal of this program.

Many departments at Mines jointly administer this cross-departmental program in quantitative biosciences and engineering. The program co-exists alongside strong disciplinary programs, in chemistry and geochemistry, chemical and biochemical engineering, physics, computer science, mathematics and statistics, mechanical engineering and metallurgical and materials engineering, civil and environmental engineering, economics, geology and geological engineering and geophysics, and thus draws from the strengths of these programs through close links and joint courses. For administrative purposes, at the graduate level, the student will reside in the advisor’s home academic department. The student’s graduate committee will have final approval of the course of study.

Fields of Research

Research at Mines in this rapidly growing field currently includes but is not limited to the following general areas:

- Laser Design and Imaging
- Biofuels and Metabolic Engineering
- --Omiics and Systems Biology
- Environmental Toxicology and Microbiology
- Biosensors and Devices
- Biotechnology
- Biomechanics
- Biofluid mechanics
- Bioinformatics and Computational Biology
- Tissue Engineering & Biomaterials
- Physical Biochemistry
- Biophysics and Analytical Methodology Development
- Digital Healthcare
- Mathematical Biology

More than 35 faculty members across the Mines campus participate in this program, which will in the future also involve faculty of nearby collaborating institutions and scientists from the biotech/healthcare industry.

Quantitative Biosciences and Engineering (QBE) Program Requirements

For admission, students may enter with biology or health-related undergraduate degrees or with a technical degree, e.g. in engineering, mathematics, or computer science.

Current Mines undergraduate students have the option to apply to the Office of Graduate Studies for the Combined program while pursuing their undergraduate degree (see information below).

Each of the three degrees (non-thesis Master of Science, thesis-based Master of Science, and Doctor of Philosophy) require the successful completion of four core courses for a total of 13 credits, as detailed below.

QBE Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL500</td>
<td>CELL BIOLOGY AND BIOCHEMISTRY</td>
<td>4.0</td>
</tr>
<tr>
<td>BIOL501</td>
<td>ADVANCED BIOCHEMISTRY</td>
<td>3.0</td>
</tr>
<tr>
<td>BIOL510</td>
<td>BIOINFORMATICS</td>
<td>3.0</td>
</tr>
<tr>
<td>BIOL520</td>
<td>SYSTEMS BIOLOGY</td>
<td>3.0</td>
</tr>
<tr>
<td>Total Semester Hrs</td>
<td></td>
<td>13.0</td>
</tr>
</tbody>
</table>

QBE Graduate Seminar

Full-time graduate students in the QBE program are expected to maintain continuous enrollment in BIOL 590, QBE Graduate Seminar, a 1 credit course. A maximum of 2 credits will be granted toward the MS degree requirements while a maximum of 4 credits will be granted toward PhD requirements, as shown below. Students who are concurrently enrolled in a different degree program that also requires seminar attendance may have this requirement waived at the discretion of the QBE Program Director.

Master of Science in Quantitative Biosciences and Engineering (Non-Thesis Option)

The Master of Science Non-Thesis (MS-NT) degree requires a minimum of 30 credits of acceptable coursework.
QBE Core Courses 13.0
QBE Electives (see list below) 15.0
BIOL590 QUANTITATIVE BIO SCIENCES & ENGINEERING GRADUATE SEMINAR (*) 2.0

Total Semester Hrs 30.0

*While full-time MS-NT students are expected to maintain continuous enrollment in BIOL 590, the QBE Graduate Seminar; a maximum of 2 credits will be granted toward the MS-NT degree requirements.

Master of Science in Quantitative Biosciences and Engineering (Thesis Option)

The thesis-based Master of Science (MS-T) requires a minimum of 30 semester hours of acceptable coursework and thesis research credits. Students conduct an in-depth research project with one of the participating faculty members who are currently accepting masters degree students. The student must also submit a thesis and pass the Thesis Defense examination before the Thesis Committee.

QBE Core Courses 13.0
QBE Elective 3.0
BIOL590 QUANTITATIVE BIO SCIENCES & ENGINEERING GRADUATE SEMINAR (*) 2.0
BIOL707 GRADUATE THESIS / DISSERTATION RESEARCH CREDIT 12.0

Total Semester Hrs 30.0

*While full-time MS-T students are expected to maintain continuous enrollment in BIOL 590, the QBE Graduate Seminar; a maximum of 2 credits will be granted toward the MS-T degree requirements.

Doctor of Philosophy in Quantitative Biosciences and Engineering

The Doctor of Philosophy (PhD)degree requires a minimum of 72 hours of course and research credit including at least 24 credits in coursework and at least 24 credits in research. Doctoral students must also pass a qualifying examination and thesis proposal defense, complete a satisfactory thesis, and successfully defend their thesis.

QBE Core Courses 13.0
QBE Electives 11.0
BIOL590 QUANTITATIVE BIO SCIENCES & ENGINEERING GRADUATE SEMINAR (*) 4.0
BIOL707 GRADUATE THESIS / DISSERTATION RESEARCH CREDIT 24.0
QBE Electives or BIOL707 Research 20.0

Total Semester Hrs 72.0

*While full-time PhD students are expected to maintain continuous enrollment in BIOL 590, the QBE Graduate Seminar, a maximum of 4 credits will be granted toward the PhD degree requirements.

QBE Elective Courses:

The current list of available electives is shown below. Because course options are continually expanding, additional complementary courses (beyond those listed here) may be approved on an ad hoc basis by the advisor in consultation with the program director.

QBE Elective Courses:

- BIOL599 INDEPENDENT STUDY 0.5-6
- CBEN412 INTRODUCTION TO PHARMACOLOGY 3.0
- CBEN432 TRANSPORT PHENOMENA IN BIOLOGICAL SYSTEMS 3.0
- CBEN531 IMMUNOLOGY FOR SCIENTISTS AND ENGINEERS 3.0
- CBEN570 INTRODUCTION TO MICROFLUIDICS 3.0
- CBEN624 APPLIED STATISTICAL MECHANICS 3.0
- CEEN501 LIFE CYCLE ASSESSMENT 3.0
- CEEN560 MOLECULAR MICROBIAL ECOLOGY AND THE ENVIRONMENT 3.0
- CEEN562 ENVIRONMENTAL GEOMICROBIOLOGY 3.0
- CEEN566 MICROBIAL PROCESSES, ANALYSIS AND MODELING 3.0
- CEEN570 WATER AND WASTEWATER TREATMENT 3.0
- CHGN409/509 BIOLOGICAL INORGANIC CHEMISTRY 3.0
- CHGN441 THE CHEMISTRY AND BIOCHEMISTRY OF PHARMACEUTICALS 3.0
- CSCI562 APPLIED ALGORITHMS AND DATA STRUCTURES 3.0
- CSCI575 ADVANCED MACHINE LEARNING 3.0
- EBGN525 BUSINESS ANALYTICS 3.0
- EBGN553 PROJECT MANAGEMENT 3.0
- MATH431 MATHEMATICAL BIOLOGY 3.0
- MATH530 INTRODUCTION TO STATISTICAL METHODS 3.0
- MATH572 MATHEMATICAL AND COMPUTATIONAL NEUROSCIENCE 3.0
- MEGN531 PROSTHETIC AND IMPLANT ENGINEERING 3.0
- MEGN532 EXPERIMENTAL METHODS IN BIOMECHANICS 3.0
- MEGN535 MODELING AND SIMULATION OF HUMAN MOVEMENT 3.0
- MEGN536 COMPUTATIONAL BIOMECHANICS 3.0
- MEGN537 PROBABLISTIC BIOMECHANICS 3.0
- MTGN570 BIOCOMPATIBILITY OF MATERIALS 3.0
- MTGN572 BIOMATERIALS 3.0
- PHGN433 BIOPHYSICS 3.0

Combined Undergraduate / Graduate Degree Program

Mines undergraduate students have the opportunity to begin work on a graduate degree in Quantitative Biosciences and Engineering (QBE) while completing their Bachelor's degree. Students must apply to the Combined degree program according to the Office of Graduate Studies timeline and be admitted to the program. Students enrolled in the Combined program may double count up to six hours of credits which were used in fulfilling the requirements of their undergraduate degree at Mines, toward their QBE graduate program. Courses to be used for double counting can be at the 400 or 500+ level. Courses listed as electives above are suitable for double counting, with other courses approved at the discretion of the graduate advisor (for MS-NT students) or thesis committee (for MS-T and PhD students). These courses must have been passed with a "B-" or better and meet all other University, Department, Division, and Program requirements for graduate credit.
BIOL500. CELL BIOLOGY AND BIOCHEMISTRY. 4.0 Semester Hrs.
This course will provide students with deep biological insight as well as hands-on experience of studying a biological question at the level of the cell, including gene expression and localization of proteins in eukaryotic cells, to the level of the protein, from molecular biology of the gene to characterization of posttranslational modifications, and protein purification and biochemical and biophysical characterization of protein structure and dynamics. These fundamental properties will be linked to protein activity and function. The emphasis of this course is on quantitative biology. Wherever appropriate, advanced concepts of protein chemistry and physics will be integrated into the delivery of the basic concepts. The course includes a 3 credit hour lecture section and a 1 credit hour lab section.

BIOL510. BIOINFORMATICS. 3.0 Semester Hrs.
Bioinformatics is a blend of multiple areas of study including biology, data science, mathematics and computer science. The field focuses on extracting new information from massive quantities of biological data and requires that scientists know the tools and methods for capturing, processing and analyzing large data sets. Bioinformatics scientists are tasked with performing high-throughput, next-generation sequencing. They analyze DNA sequence alignment to find mutations and anomalies and understand the impact on cellular processes. The bioinformatician uses software to analyze protein structure and its impact on cell function. Learning how to design experiments and perform advanced statistical analysis is essential for anyone interested in this field, which is main goal of this course. Prerequisite: CSC1102.

BIOL520. SYSTEMS BIOLOGY. 3.0 Semester Hrs.
This course provides students an introduction to the emerging field of systems biology. It will consist of lectures, group discussion sessions, and problem-solving sessions and/or computational labs. Students will learn strategies and tools to interrogate biological systems using mathematical modeling. Topics of the course will come from typical aspects of biomathematical modeling including, but not limited to: the choice of a modeling framework from various approaches; the design of interaction diagrams; the identification of variables and processes; the design of systems models; standard methods of parameter estimation; the analysis of steady states, stability, sensitivity; numerical evaluations of transients; phase-plane analysis; simulation of representative biological scenarios. All theoretical concepts are exemplified with applications.

BIOL598. SPECIAL TOPICS IN BIOLOGY. 6.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once, but no more than twice for the same course content. Prerequisite: none. Variable credit: 0 to 6 credit hours. Repeatable for credit under different titles.

BIOL599. INDEPENDENT STUDY. 0.5-6 Semester Hr.
(I, II, S) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: "Independent Study" form must be completed and submitted to the Registrar. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/experience and maximums vary by department. Contact the Department for credit limits toward the degree.

BIOL707. GRADUATE THESIS / DISSERTATION RESEARCH CREDIT. 1-15 Semester Hr.
(I, II, S) Research credit hours required for completion of a Masters-level thesis or Doctoral dissertation. Research must be carried out under the direct supervision of the student's faculty advisor. Variable class and semester hours. Repeatable for credit.
Kim Williams, Professor of Chemistry
Xiaoli Zhang, Associate Professor of Mechanical Engineering

Teaching Faculty

Linda Battalora, Teaching Professor of Petroleum Engineering
Suzannah Beeler, Assistant Teaching Professor of Chemical and Biological Engineering
Kristine Csavina, Teaching Professor of Mechanical Engineering
Alina Handorean, Teaching Professor of Engineering, Design & Society
Cynthia Norrgran, Teaching Associate Professor of Chemical and Biological Engineering
Josh Ramey, Director of the QBE Undergraduate Program and Teaching Associate Professor of Chemical and Biological Engineering
Justin Shaffer, Teaching Associate Professor of Chemical and Biological Engineering