Data Science

Program Description
The Master of Data Science (Non-Thesis) program is designed to give candidates a foundation in statistics and computer science and also provide knowledge in a particular application domain of science or engineering. The balance between these three elements is a strength of the program and can prepare candidates for Data Science careers in industry, government, or for further study at the PhD level. Throughout is an emphasis on working in teams, creative problem solving, and professional development.

The Data Science Certificates are designed for college graduates and professionals interested in the emerging field of Data Science as applied within their individual fields of study or industries.

Master of Data Science (Non-Thesis)
The field of Data Science draws on elements of computer science, statistics and interdisciplinary applications to address the unique needs of gaining knowledge and insight through data analysis. This Masters Non-Thesis program is designed to give candidates a foundation in statistics and computer science and also provide knowledge in a particular application domain of science or engineering. The balance between these three elements is a strength of the program and can prepare candidates for Data Science careers in industry, government, or for further study at the PhD level. Moreover, the coursework will be flexible and tailored to each candidate. For example, the program will allow a candidate to increase his/her skills in data analytics while developing a focused area of application or alternatively allow a candidate with depth in an area of application to gain skills in statistics and computer science.

Program Requirements
This program will follow a 3 X 3 + 1 design: three modules and a mini-module.

Modules (each consisting of three 3-credit courses)

Data Modeling and Statistical Learning
DSCI530 STATISTICAL METHODS I 3.0
DSCI560 INTRODUCTION TO KEY STATISTICAL LEARNING METHODS I 3.0
DSCI561 INTRODUCTION TO KEY STATISTICAL LEARNING METHODS II 3.0

Machine Learning, Data Processing and Algorithms, and Parallel Computation
DSCI403 INTRODUCTION TO DATA SCIENCE 3.0

Individualized and Domain Specific Coursework
Electives for the third module can be designed by the student but the plan needs to be approved by the program curriculum committee. Although this individualized module can draw on graduate courses from across the university, two specific examples from engineering and geophysics are given below:

Electrical Engineering
EENG411 DIGITAL SIGNAL PROCESSING 3.0
EENG509 SPARSE SIGNAL PROCESSING 3.0
EENG511 CONVEX OPTIMIZATION AND ITS ENGINEERING APPLICATIONS 3.0
EENG515 MATHEMATICAL METHODS FOR SIGNALS AND SYSTEMS 3.0
or EENG519 ESTIMATION THEORY AND KALMAN FILTERING

Geophysics
GPGN533 GEOPHYSICAL DATA INTEGRATION & GEOSTATISTICS 3.0
GPGN570 APPLICATIONS OF SATELLITE REMOTE SENSING 3.0
or GPGN605 INVERSION THEORY

Mini-module (comprised of three 1-credit courses)

Professional Development
SYGN502 INTRODUCTION TO RESEARCH ETHICS 1.0
SYGN5XX LEADERSHIP AND TEAMWORK 1.0
LICM501 PROFESSIONAL ORAL COMMUNICATION 1.0

Sample Course Schedule

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>lec</th>
<th>lab</th>
<th>sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>DSCI403</td>
<td>INTRODUCTION TO DATA SCIENCE</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSCI470</td>
<td>INTRODUCTION TO MACHINE LEARNING</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSCI470</td>
<td>INTRODUCTION TO DATA SCIENCE</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSCI530</td>
<td>STATISTICAL METHODS I</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELEC</td>
<td>Elective Approved by Program*</td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>ELECT</td>
<td>Elective Approved by Program*</td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>DSCI470</td>
<td>INTRODUCTION TO MACHINE LEARNING</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSCI530</td>
<td>STATISTICAL METHODS I</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELEC</td>
<td>Elective Approved by Program*</td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>ELECT</td>
<td>Elective Approved by Program*</td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
</tbody>
</table>

| Total | 12.0 | |

<table>
<thead>
<tr>
<th>Spring</th>
<th>Course Code</th>
<th>Course Title</th>
<th>lec</th>
<th>lab</th>
<th>sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DSCI575</td>
<td>MACHINE LEARNING</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSCI560</td>
<td>INTRODUCTION TO KEY STATISTICAL LEARNING METHODS I</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECT</td>
<td>Elective Approved by Program*</td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>ELECT</td>
<td>Elective Approved by Program*</td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>DSCI550</td>
<td>PROFESSIONAL ORAL COMMUNICATION</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total | 10.0 | |

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>lec</th>
<th>lab</th>
<th>sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>DSCI561</td>
<td>INTRODUCTION TO KEY STATISTICAL LEARNING METHODS II</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECT</td>
<td>Elective Approved by Program*</td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
</tbody>
</table>

| Total | 3.0 | |
Total Semester Hrs: 30.0

*Electives for the third module can be designed by the student but the plan needs to be approved by the Data Science program curriculum committee. This individualized module can draw on graduate courses from across the university.

Mines Combined Undergraduate / Graduate Degree Program

Students enrolled in Mines' combined undergraduate/graduate program may double count up to six credits of graduate coursework to fulfill requirements of both their undergraduate and graduate degree programs. These courses must have been passed with “B-” or better, not be substitutes for required coursework, and meet all other University, Department, and Program requirements for graduate credit.

Students are advised to consult with their undergraduate and graduate advisors for appropriate courses to double count upon admission to the combined program.

Certificate Programs in Data Science

Program Requirements

There are five Certificates in Data Science. Applicants for each are required to have an undergraduate degree to be admitted into the Certificate programs. Course prerequisites, if any, are noted for each Certificate program.

Students working toward one of the Data Science Certificates are required to successfully complete 12 credits, as detailed below for each Certificate. The courses taken for the Certificates can be used towards a Master’s or PhD degree at Mines, however courses used for one Data Science Certificate cannot also be counted toward another Data Science Certificate.

Graduate Certificate in Data Science - Statistical Learning (12 credits)

The Data Science - Statistical Learning Graduate Certificate is an online or residential program focusing on statistical methods for interpreting complex data sets and quantifying the uncertainty in a data analysis. The Certificate also includes gaining new skills in computer science but is grounded in statistical models for data, also termed statistical learning, rather than algorithmic approaches. Students will develop an essential skill set in statistical methods most commonly used in data science along with the understanding of the methods’ strengths and weaknesses. Moreover, the coursework will cover a broad range of applications making it relevant for varied scientific and engineering domains.

Applicants must have completed the following courses, or their equivalents, with a B- or better: CSCI261 and CSCI262 Data Structures, MATH332 Linear Algebra and MATH334 Introduction to Probability.

DSCI403 INTRODUCTION TO DATA SCIENCE 3.0
DSCI530 STATISTICAL METHODS I 3.0
DSCI560 INTRODUCTION TO KEY STATISTICAL LEARNING METHODS I 3.0
DSCI561 INTRODUCTION TO KEY STATISTICAL LEARNING METHODS II 3.0

Graduate Certificate in Data Science - Earth Resources (12 credits)

The Graduate Certificate in Data Science - Earth Resources is an online program building on the foundational concepts in data science as it pertains to managing surface and subsurface Earth resources and on specific applications (use cases) from the petroleum and minerals industries as well as water resource monitoring and remote sensing of Earth change. The Certificate includes one core introductory Data Science course, two courses specific to Earth resources and one elective.

DSCI403 INTRODUCTION TO DATA SCIENCE 3.0
GEOL557 EARTH RESOURCE DATA SCIENCE 1: FUNDAMENTALS 3.0
GEOL558 EARTH RESOURCE DATA SCIENCE 2: APPLICATIONS AND MACHINE-LEARNING 3.0
ELECTIVE (1) ELECTIVE FROM LIST BELOW 3.0

Graduate Certificate in Data Science - Earth Resources Electives (select ONE (1) from the list below):

Geospatial Focus:
GEGN575 APPLICATIONS OF GEOGRAPHIC INFORMATION SYSTEMS 3.0
GEGN579 PYTHON SCRIPTING FOR GEOGRAPHIC INFORMATION SYSTEMS 3.0

Petroleum Focus:
GPGN519 ADVANCED FORMATION EVALUATION 3.0
GPGN547 PHYSICS, MECHANICS, AND PETROPHYSICS OF ROCKS 3.0
GPGN558 SEISMIC DATA INTERPRETATION AND QUANTITATIVE ANALYSIS 3.0
GPGN651 ADVANCED SEISMOLOGY 3.0
PEGN522 ADVANCED WELL STIMULATION 3.0
PEGN551 PETROLEUM DATA ANALYTICS - FUNDAMENTALS 3.0

Mining Focus:
MNGN548 INFORMATION TECHNOLOGIES FOR MINING SYSTEMS 3.0

Hydrology Focus:
CEEN581 WATERSHED SYSTEMS MODELING 3.0

Additional Options:
DSCI/MATH530 STATISTICAL METHODS I 3.0
EBGN525 BUSINESS ANALYTICS 3.0

Graduate Certificate in Petroleum Data Analytics (12 credits)

The Graduate Certificate in Petroleum Data Analytics is an online program building on the foundational concepts in statistics and focusing on the data foundation of the oil and gas industry, the challenges of Big Data to oilfield operations and on specific applications (use cases) for
The Data Science - Foundations Post-Baccalaureate Certificate is an online or residential program focusing on the foundational concepts in statistics and computer science that support the explosion of new methods for interpreting data in its many forms. The Certificate balances an introduction to data science with teaching basic skills in applying methods in statistics and machine learning to analyze data. Students will gain a perspective on the kinds of problems that can be solved by data intensive methods and will also acquire new analysis skills outside of the certificate. Moreover, the coursework will cover a broad range of applications, making it relevant for varied scientific and engineering domains.

Applicants must have completed the following courses, or their equivalents, with a B- or better: CSCI261 and CSCI262 Data Structures, MATH332 Linear Algebra and MATH334 Introduction to Probability.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCI403</td>
<td>INTRODUCTION TO DATA SCIENCE</td>
<td>3.0</td>
</tr>
<tr>
<td>DSCI470</td>
<td>INTRODUCTION TO MACHINE LEARNING</td>
<td>3.0</td>
</tr>
<tr>
<td>DSCI530</td>
<td>STATISTICAL METHODS I</td>
<td>3.0</td>
</tr>
<tr>
<td>DSCI575</td>
<td>MACHINE LEARNING</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Post-Baccalaureate Certificate in Data Science - Computer Science (12 credits)

The Data Science - Computer Science Post Baccalaureate Certificate is an online or residential program focusing on data science concepts within computer science (e.g., computational techniques and machine learning) plus prerequisite knowledge (e.g., probability and regression).

The aim of this certificate is to help students develop an essential skill set in data analytics, including (1) deriving predictive insights by applying advanced statistics, modeling, and programming skills, (2) acquiring in-depth knowledge of machine learning and computational techniques, and (3) unearthing important questions and intelligence for a range of industries, from product design to finance.

Applicants must have completed the following courses, or their equivalents, with a B- or better: CSCI261 and CSCI262 Data Structures, MATH213 Calculus III and MATH332 Linear Algebra. DSCI530 Statistical Methods I, will serve as the MATH201 Probability and Statistics prerequisite for the two machine learning courses of the certificate (DSCI470 Introduction to Machine Learning and DSCI575 Machine Learning).

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCI403</td>
<td>INTRODUCTION TO DATA SCIENCE</td>
<td>3.0</td>
</tr>
<tr>
<td>DSCI530</td>
<td>STATISTICAL METHODS I</td>
<td>3.0</td>
</tr>
<tr>
<td>DSCI470</td>
<td>INTRODUCTION TO MACHINE LEARNING</td>
<td>3.0</td>
</tr>
<tr>
<td>DSCI575</td>
<td>MACHINE LEARNING</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Courses

DSCI403. INTRODUCTION TO DATA SCIENCE. 3.0 Semester Hrs.

(i, ii) This course will teach students the core skills needed for gathering, cleaning, organizing, analyzing, interpreting, and visualizing data. Students will learn basic SQL for working with databases, basic Python programming for data manipulation, and the use and application of statistical and machine learning toolkits for data analysis. The course will be primarily focused on applications, with an emphasis on working with real (non-synthetic) datasets. Prerequisite: CSCI101 or CSCI102 or CSCI261 or CSCI200.

DSCI470. INTRODUCTION TO MACHINE LEARNING. 3.0 Semester Hrs.

(i) The goal of machine learning is to build computer systems that improve automatically with experience, which has been successfully applied to a variety of application areas, including, for example, gene discovery, financial forecasting, and credit card fraud detection. This introductory course will study both the theoretical properties of machine learning algorithms and their practical applications. Students will have an opportunity to experiment with machine learning techniques and apply them to a selected problem in the context of term projects. Prerequisite: CSCI101 or CSCI 102 or CSCI261 or CSCI200; MATH201, MATH332.

DSCI530. STATISTICAL METHODS I. 3.0 Semester Hrs.

Introduction to probability, random variables, and discrete and continuous probability models. Elementary simulation. Data summarization and analysis. Confidence intervals and hypothesis testing for means and variances. Chi square tests. Distribution-free techniques and regression analysis. Prerequisite: MATH213 or equivalent.

DSCI575. MACHINE LEARNING

Part one of a two-course series introducing statistical learning methods with a focus on conceptual understanding and practical applications. Methods covered will include Introduction to Statistical Learning, Linear Regression, Classification, Resampling Methods, Basis Expansions, Regularization, Model Assessment and Selection. Prerequisite: DSCI530 or MATH530.
DSCI561. INTRODUCTION TO KEY STATISTICAL LEARNING
METHODS II. 3.0 Semester Hrs.
Equivalent with MATH561,
Part two of a two course series introducing statistical learning methods
with a focus on conceptual understanding and practical applications.
Methods covered will include Non-linear Models, Tree-based Methods,
Support Vector Machines, Neural Networks, Unsupervised Learning.
Prerequisite: DSCI560 or MATH560.

DSCI575. MACHINE LEARNING. 3.0 Semester Hrs.
The goal of machine learning research is to build computer systems
that learn from experience and that adapt to their environments.
Machine learning systems do not have to be programmed by humans
to solve a problem; instead, they essentially program themselves
based on examples of how they should behave, or based on trial and
error experience trying to solve the problem. This course will focus
on the methods that have proven valuable and successful in practical
applications. The course will also contrast the various methods, with the
aim of explaining the situations in which each is most appropriate.

Professors
Douglas Nychka, Applied Mathematics & Statistics
Paul Sava, Geophysics
Michael Wakin, Electrical Engineering

Professor of Practice
Jim Crompton, Petroleum Engineering

Associate Professors
Soutir Bandyopadhyay, Applied Mathematics and Statistics
Dorit Hammerling, Applied Mathematics & Statistics
Hua Wang, Computer Science

Teaching Associate Professor
Wendy Fisher, Computer Science

Research Professor
Alfred William (Bill) Eustes, III, Petroleum Engineering

Research Associate Professor
Zane Jobe, Geology and Geological Engineering