Data Science

Degrees Offered
• Master of Science in Data Science (Non-Thesis)
• Graduate Certificate in Data Science - Statistical Learning
• Graduate Certificate in Data Science - Earth Resources
• Graduate Certificate in Petroleum Data Analytics
• Graduate Certificate in Business Analytics
• Post-Baccalaureate Certificate in Data Science - Foundations
• Post Baccalaureate Certificate in Data Science - Computer Science

Program Description
The Master of Data Science (Non-Thesis) program is designed to give candidates a foundation in statistics and computer science and also provide knowledge in a particular application domain of science or engineering. The balance between these three elements is a strength of the program and can prepare candidates for Data Science careers in industry, government, or for further study at the PhD level. Throughout is an emphasis on working in teams, creative problem solving, and professional development.

The Data Science Certificates are designed for college graduates and professionals interested in the emerging field of Data Science as applied within their individual fields of study or industries.

Master of Data Science (Non-Thesis)
The field of Data Science draws on elements of computer science, statistics and interdisciplinary applications to address the unique needs of gaining knowledge and insight through data analysis. This Masters Non-Thesis program is designed to give candidates a foundation in statistics and computer science and also provide knowledge in a particular application domain of science or engineering. The balance between these three elements is a strength of the program and can prepare candidates for Data Science careers in industry, government, or for further study at the PhD level. Moreover, the coursework will be flexible and tailored to each candidate. For example, the program will allow a candidate to increase his/her skills in data analytics while developing a focused area of application or alternatively allow a candidate with depth in an area of application to gain skills in statistics and computer science.

Program Requirements
This program will follow a 3 X 3 + 1 design: three modules and a mini-module.

Modules (each consisting of three 3-credit courses)
Data Modeling and Statistical Learning
DSCI530 INTRODUCTION TO STATISTICAL METHODS 3.0
DSCI560 INTRODUCTION TO KEY STATISTICAL LEARNING METHODS I 3.0
DSCI561 INTRODUCTION TO KEY STATISTICAL LEARNING METHODS II 3.0

Machine Learning, Data Processing and Algorithms, and Parallel Computation
DSCI403 INTRODUCTION TO DATA SCIENCE 3.0
DSCI470 INTRODUCTION TO MACHINE LEARNING 3.0
DSCI575 MACHINE LEARNING 3.0

Individualized and Domain Specific Coursework
Electives for the third module can be designed by the student but the plan needs to be approved by the program curriculum committee. Although this individualized module can draw on graduate courses from across the university, two specific examples from engineering and geophysics are given below:

Electrical Engineering
EENG411 DIGITAL SIGNAL PROCESSING 3.0
EENG509 SPARSE SIGNAL PROCESSING 3.0
EENG511 CONVEX OPTIMIZATION AND ITS ENGINEERING APPLICATIONS 3.0
EENG515 MATHEMATICAL METHODS FOR SIGNALS AND SYSTEMS 3.0
or EENG519 ESTIMATION THEORY AND KALMAN FILTERING

Geophysics
GPGN533 GEOPHYSICAL DATA INTEGRATION & GEOSTATISTICS 3.0
GPGN570 APPLICATIONS OF SATELLITE REMOTE SENSING 3.0
or GPGN605 INVERSION THEORY

Mini-module (comprised of three 1-credit courses)
Professional Development
SYGN502 INTRODUCTION TO RESEARCH ETHICS 1.0
SYGN5XX LEADERSHIP AND TEAMWORK 1.0
LICM501 PROFESSIONAL ORAL COMMUNICATION 1.0

Sample Course Schedule
First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>lec</th>
<th>lab</th>
<th>sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>DSCI403 INTRODUCTION TO DATA SCIENCE</td>
<td>3.0</td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>Fall</td>
<td>DSCI470 INTRODUCTION TO MACHINE LEARNING</td>
<td>3.0</td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>Fall</td>
<td>DSCI530 INTRODUCTION TO STATISTICAL METHODS</td>
<td>3.0</td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>Fall</td>
<td>ELECT Elective Approved by Program*</td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>DSCI575 MACHINE LEARNING</td>
<td>3.0</td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>Spring</td>
<td>DSCI560 INTRODUCTION TO KEY STATISTICAL LEARNING METHODS I</td>
<td>3.0</td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>Spring</td>
<td>ELECT Elective Approved by Program*</td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>Spring</td>
<td>LICM501 PROFESSIONAL ORAL COMMUNICATION</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>lec</th>
<th>lab</th>
<th>sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>DSCI561 INTRODUCTION TO KEY STATISTICAL LEARNING METHODS II</td>
<td>3.0</td>
<td></td>
<td>3.0</td>
</tr>
</tbody>
</table>
The Data Science - Foundations Post-Baccalaureate Certificate is an online or residential program focusing on data science concepts within computer science (e.g., computational techniques and machine learning) plus prerequisite knowledge (e.g., probability and regression). The aim of this certificate is to help students develop an essential skill set in data analytics, including (1) deriving predictive insights by applying advanced statistics, modeling, and programming skills, (2) acquiring in-depth knowledge of machine learning and computational techniques, and (3) unearthing important questions and intelligence for a range of industries, from product design to finance.

Applicants must have completed the following courses, or their equivalents, with a B- or better: CSCI261 and CSCI262 Data Structures, MATH213 Calculus III and MATH332 Linear Algebra. DSCI530 Statistical Methods I, will serve as the MATH201 Probability and Statistics prerequisite for the two machine learning courses of the certificate (DSCI470 Introduction to Machine Learning and DSCI575 Machine Learning).

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCI403</td>
<td>INTRODUCTION TO DATA SCIENCE</td>
<td>3.0</td>
</tr>
<tr>
<td>DSCI530</td>
<td>INTRODUCTION TO STATISTICAL METHODS</td>
<td>3.0</td>
</tr>
<tr>
<td>DSCI470</td>
<td>INTRODUCTION TO MACHINE LEARNING</td>
<td>3.0</td>
</tr>
<tr>
<td>DSCI575</td>
<td>MACHINE LEARNING</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Graduate Certificate in Data Science - Statistical Learning (12 credit hours)

The Data Science - Statistical Learning Graduate Certificate is an online or residential program focusing on statistical methods for interpreting complex data sets and quantifying the uncertainty in a data analysis. The Certificate also includes gaining new skills in computer science but is grounded in statistical models for data, also termed statistical learning, rather than algorithmic approaches. Students will develop an essential skill set in statistical methods most commonly used in data science along with the understanding of the methods' strengths and weaknesses. Moreover, the coursework will cover a broad range of applications making it relevant for varied scientific and engineering domains.

Applicants must have completed the following courses, or their equivalents, with a B- or better: CSCI261 and CSCI262 Data Structures, MATH332 Linear Algebra and MATH334 Introduction to Probability.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCI403</td>
<td>INTRODUCTION TO DATA SCIENCE</td>
<td>3.0</td>
</tr>
<tr>
<td>DSCI530</td>
<td>INTRODUCTION TO STATISTICAL METHODS</td>
<td>3.0</td>
</tr>
<tr>
<td>DSCI560</td>
<td>INTRODUCTION TO KEY STATISTICAL LEARNING METHODS I</td>
<td>3.0</td>
</tr>
<tr>
<td>DSCI561</td>
<td>INTRODUCTION TO KEY STATISTICAL LEARNING METHODS II</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Graduate Certificate in Data Science - Earth Resources (12 credit hours)

The Graduate Certificate in Data Science - Earth Resources is an online program building on the foundational concepts in data science as it
presents an online program building on the foundational concepts in statistics and focusing on data analysis. The certificate includes two core introductory Data Science courses and one elective.

Graduate Certificate in Petroleum Data Analytics

The Graduate Certificate in Petroleum Data Analytics is an online program that focuses on managing surface and subsurface Earth resources and on specific applications (use cases) from the petroleum and minerals industries as well as water resource monitoring and remote sensing of Earth change. The Certificate includes one core introductory Data Science course, two courses specific to Earth resources and one elective.

Program Requirements

The certificate is an online or residential program. The requirements are to complete the following three courses:

- **EBGN525** BUSINESS ANALYTICS 3.0
- **EBGN560** DECISION ANALYTICS 3.0
- **EBGN571** MARKETING ANALYTICS 3.0

Course substitutions can be approved on a case-by-case basis by the Certificate directors. Completing the Certificate will also position students to apply to either the Master of Science-Engineering and Technology Management degree or the Master of Science in Data Science degree, as all the Certificate courses can be applied to either degree.

Courses

- **DSCI403. INTRODUCTION TO DATA SCIENCE.** 3.0 Semester Hrs.
 This course will teach students the core skills needed for gathering, cleaning, organizing, analyzing, interpreting, and visualizing data. Students will learn basic SQL for working with databases, basic Python programming for data manipulation, and the use and application of statistical and machine learning toolkits for data analysis. The course will be primarily focused on applications, with an emphasis on working with real (non-synthetic) datasets. Prerequisite: CSCI101 or CSCI261.

- **DSCI470. INTRODUCTION TO MACHINE LEARNING.** 3.0 Semester Hrs.
 The goal of machine learning is to build computer systems that improve automatically with experience, which has been successfully applied to a variety of application areas, including, for example, gene discovery, financial forecasting, and credit card fraud detection. This introductory course will study both the theoretical properties of machine learning algorithms and their practical applications. Students will have an opportunity to experiment with machine learning techniques and apply them to a selected problem in the context of term projects. Prerequisite: MATH201, MATH332.

- **DSCI530. STATISTICAL METHODS I.** 3.0 Semester Hrs.
 Introduction to probability, random variables, and discrete and continuous probability models. Elementary simulation. Data summarization and analysis. Confidence intervals and hypothesis testing for means and variances. Chi square tests. Distribution-free techniques and regression analysis. Prerequisite: MATH213 or equivalent.

- **DSCI540. INTRODUCTION TO KEY STATISTICAL LEARNING METHODS I.** 3.0 Semester Hrs.
 Part one of a two-course series introducing statistical learning methods with a focus on conceptual understanding and practical applications. Methods covered will include Introduction to Statistical Learning, Linear Regression, Classification, Resampling Methods, Basis Expansions, Regularization, Model Assessment and Selection.

- **DSCI550. STATISTICAL METHODS II.** 3.0 Semester Hrs.
 Part two of a two course series introducing statistical learning methods with a focus on conceptual understanding and practical applications. Methods covered will include Non-linear Models, Tree-based Methods, Support Vector Machines, Neural Networks, Unsupervised Learning.
DSCI575. MACHINE LEARNING. 3.0 Semester Hrs.
The goal of machine learning research is to build computer systems that learn from experience and that adapt to their environments. Machine learning systems do not have to be programmed by humans to solve a problem; instead, they essentially program themselves based on examples of how they should behave, or based on trial and error experience trying to solve the problem. This course will focus on the methods that have proven valuable and successful in practical applications. The course will also contrast the various methods, with the aim of explaining the situations in which each is most appropriate. Prerequisite: CSCI262, MATH201, MATH332.

Professors
Douglas Nychka, Applied Mathematics & Statistics
Paul Sava, Geophysics
Michael Wakin, Electrical Engineering

Associate professors
Soutir Bandyopadhyay, Applied Mathematics and Statistics
Dorit Hammerling, Applied Mathematics & Statistics
Michael Wakin, Electrical Engineering
Hua Wang, Computer Science

Teaching Associate Professor
Wendy Fisher, Computer Science