

Geochemistry

Degrees Offered

- Professional Masters in Environmental Geochemistry
- Master of Science (Geochemistry)
- Doctor of Philosophy (Geochemistry)

Program Description

The Graduate Program in Geochemistry is an interdisciplinary program with the mission to educate students whose interests lie at the intersection of the geological and chemical sciences. The Geochemistry Program consists of two subprograms, administering two M.S. and Ph.D. degree tracks and one Professional Master's (non-thesis) degree program. The Geochemistry (GC) degree track pertains to the history and evolution of the Earth and its features, including but not limited to the chemical evolution of the crust and mantle, geochemistry of energy and mineral resources, aqueous geochemistry and fluid-rock/fluid-mineral interactions and chemical mineralogy. The Environmental Biogeochemistry (EBGC) degree track pertains to the coupled chemical and biological processes of Earth's biosphere, and the changes in these processes caused by human activities.

Master of Science and Doctor of Philosophy

1. Geochemistry degree track

Prerequisites

Each entering student will have an entrance interview with members of the Geochemistry subprogram faculty. Since entering students may not be proficient in both areas, a placement examination in geology and/or chemistry may be required upon the discretion of the interviewing faculty. If a placement examination is given, the results may be used to establish deficiency requirements. Credit toward a graduate degree will not be granted for courses taken to fulfill deficiencies.

Requirements

The Master of Science (Geochemistry degree track) requires a minimum of 36 semester hours including:

- Course work: 24.0
- Research credits: 12.0
- Total Semester Hrs: 36.0

To ensure breadth of background, the course of study for the Master of Science (Geochemistry degree track) must include:

- CHGC503 INTRODUCTION TO GEOCHEMISTRY: 3.0
- CHGC504 METHODS IN GEOCHEMISTRY: 3.0

Master of Science (Geochemistry) students select at least 8 credits of the following:

- CHGC509 INTRODUCTION TO AQUEOUS GEOCHEMISTRY: 3.0
- or CEEN550 PRINCIPLES OF ENVIRONMENTAL CHEMISTRY
- CHGC514 GEOCHEMISTRY THERMODYNAMICS AND KINETICS: 3.0
- GEGN530 CLAY CHARACTERIZATION: 2.0

Master of Science (Geochemistry degree track) students must also complete an appropriate thesis, based upon original research they have conducted. A thesis proposal and course of study must be approved by the student's thesis committee before the student begins substantial work on the thesis research.

Students who enter the PhD program with a thesis-based Master's degree may transfer up to 36 semester hours in recognition of the course work and research completed for that degree. At the discretion of the student's Thesis Committee, up to 24 semester hours of previous graduate-level course work (at Mines or elsewhere) can be applied towards the course requirement of the Doctor of Philosophy (Geochemistry degree track) program.

2. Doctor of Philosophy degree track

Prerequisites

Doctor of Philosophy (Geochemistry degree track) students must take:

- CHGC503 INTRODUCTION TO GEOCHEMISTRY: 3.0
- CHGC504 METHODS IN GEOCHEMISTRY: 3.0

Students must also select at least 5 credits of the following:

- CHGC509 INTRODUCTION TO AQUEOUS GEOCHEMISTRY: 3.0
- CHGC514 GEOCHEMISTRY THERMODYNAMICS AND KINETICS: 3.0
- GEGN530 CLAY CHARACTERIZATION: 2.0
- GEGN586 NUMERICAL MODELING OF GEOCHEMICAL SYSTEMS: 3.0
- GEOL512 MINERALOGY AND CRYSTAL CHEMISTRY: 3.0
- GEOL513 HYDROTHERMAL GEOCHEMISTRY: 3.0
- GEOL523 REFLECTED LIGHT AND ELECTRON MICROSCOPY: 2.0
- GEOL535 LITHO ORE FORMING PROCESSES: 1.0
- GEOL540 ISO TOPE GEOCHEMISTRY AND GEOCHRONOLOGY: 3.0

Doctor of Philosophy (Geochemistry degree track) students must also complete an appropriate thesis, based upon original research they have conducted. A thesis proposal and course of study must be approved by the student's thesis committee before the student begins substantial work on the thesis research.

Master of Science (Geochemistry degree track) will be expected to give one public seminar on their research and Doctor of Philosophy
The Environmental Biogeochemistry (EBGC) degree track

Prerequisites
A candidate for an MS or PhD in the EBGC degree track should have an undergraduate science or engineering degree with coursework including multivariable calculus, two semesters each of physics and chemistry, and one semester each of biology and earth science. Applicants who do not fulfill these requirements may still be admitted, but will need to undergo an entrance interview to establish deficiency requirements. Credit toward a graduate degree will not be given for undergraduate courses taken to fulfill deficiencies.

Requirements
Required Curriculum: A thesis proposal and thesis are required for all MS and PhD degrees in the EBGC degree track. MS thesis advisors (or at least one co-advisor) must be members of the EBGC subprogram. PhD thesis committees must have a total of at least four members. PhD advisors (or at least one co-advisor) and one additional committee member must be members of the EBGC subprogram. MS students will be expected to give one public seminar on their research; PhD students are required to give at least one in addition to their thesis defense presentation.

In addition, both MS and PhD students in the EBGC degree track must complete the following coursework:

1. Two required classes:
 - CHGC503 INTRODUCTION TO GEOCHEMISTRY 3.0
 - CHGC504 METHODS IN GEOCHEMISTRY 3.0

2. One chemistry-focused class, chosen from the following list:
 - CEEN550 PRINCIPLES OF ENVIRONMENTAL CHEMISTRY 3.0
 - CEEN551 ENVIRONMENTAL ORGANIC CHEMISTRY 3.0
 - CHGC509 INTRODUCTION TO AQUEOUS GEOCHEMISTRY 3.0

3. One biology-focused class chosen from the following list:
 - CEEN650 MOLECULAR MICROBIAL ECOLOGY AND THE ENVIRONMENT 3.0
 - CEEN562 ENVIRONMENTAL GEOMICROBIOLOGY 3.0

4. One earth science-focused class chosen from the following list:
 - CHGC514 GEOCHEMISTRY THERMODYNAMICS AND KINETICS 3.0
 - GEVN530 CLAY CHARACTERIZATION 2.0
 - GEVN586 NUMERICAL MODELING OF GEOCHEMICAL SYSTEMS 3.0

Total credits required for MS: 36
Total credits required for PhD: 72

The student’s thesis committee may specify additional course requirements and makes final decisions regarding transfer credits.

Students who enter the PhD program with a thesis-based Master’s degree may transfer up to 36 semester hours in recognition of the course work and research completed for that degree. At the discretion of the student’s Thesis Committee, up to 24 semester hours of previous graduate-level course work (at Mines or elsewhere) can be applied towards the course requirement of the Doctor of Philosophy (Geochemistry degree track) program.

A total of 24 course credits are required with at least 9 credits being completed at Mines.

Comprehensive Examination
Doctor of Philosophy (Geochemistry) students in both degree tracks must take a comprehensive examination. It is expected that this exam will be completed within three years of matriculation or after the bulk of course work is finished, whichever occurs earlier. This examination will be administered by the student’s thesis committee and will consist of an oral and a written examination, administered in a format to be determined by the thesis committee. Two negative votes in the thesis committee constitute failure of the examination.

In case of failure of the comprehensive examination, a re-examination may be given upon the recommendation of the thesis committee and approval of the Dean of Graduate Studies. Only one re-examination may be given.

Tuition
The Master of Science (Geochemistry) and Doctor of Philosophy (Geochemistry) programs have been admitted to the Western Regional Graduate Program. This entity recognizes the Geochemistry Program as unique in the region. Designation of the Geochemistry Program by Western Regional Graduate program allows residents of western states to enroll in the program at Colorado resident tuition rates. Eligible states include Alaska, Arizona, California, Hawaii, Idaho, Montana, Nevada, New Mexico, North Dakota, South Dakota, Utah, Washington and Wyoming.

Professional Masters in Environmental Geochemistry

Introduction
The Professional Masters in Environmental Geochemistry program is intended to provide:

1. an opportunity for Mines undergraduates to obtain, as part of a fifth year of study, a Master in addition to the Bachelor degree; and
2. additional education for working professionals in the area of geochemistry as it applies to problems relating to the environment.

This is a non-thesis Master degree program administered by the Environmental Biogeochemistry subprogram of the Geochemistry program, and may be completed as part of a combined degree program by individuals already matriculated as undergraduate students at Mines, or by individuals already holding undergraduate or advanced degrees and who are interested in a graduate program that does not have the traditional research requirement. The program consists primarily of coursework in geochemistry and allied fields with an emphasis on environmental applications. No research is required though the program does allow for independent study, professional development, internship, and cooperative experience.

Application
Undergraduate students at Mines must declare an interest during their third year to allow for planning of coursework that will apply towards
The program. These students must have an overall GPA of at least 3.0. Students majoring in other departments besides the Department of Geology and Geological Engineering and the Department of Chemistry and Geochemistry may want to decide on the combined degree program option earlier to be sure prerequisites are satisfied. Applicants other than Mines undergraduates who are applying for this non-thesis Master degree program must follow the same procedures that all prospective graduate students follow. However, the requirement of the general GRE may be waived.

Prerequisites
Each entering student will have an entrance interview with members of the Geochemistry faculty. Each department recognizes that entering students may not be proficient in both areas. A placement examination in geology and/or chemistry may be required upon the discretion of the interviewing faculty. If a placement examination is given, the results may be used to establish deficiency requirements. Credit toward a graduate degree will not be granted for courses taken to fulfill deficiencies.

Requirements
A minimum of 30 credit hours are required, with an overall GPA of at least 3.0. The overall course requirements will depend on the background of the individual, but may be tailored to professional objectives.

A 9 credit-hour core program consists of:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHGC503</td>
<td>INTRODUCTION TO GEOCHEMISTRY</td>
<td>3.0</td>
</tr>
<tr>
<td>CHGC509</td>
<td>INTRODUCTION TO AQUEOUS GEOCHEMISTRY</td>
<td>3.0</td>
</tr>
<tr>
<td>GEGN466</td>
<td>GROUNDWATER ENGINEERING</td>
<td>3.0</td>
</tr>
<tr>
<td>Total Semester Hrs</td>
<td></td>
<td>9.0</td>
</tr>
</tbody>
</table>

In addition, 15 credit hours must be selected from the list below, representing the following core areas: geochemical methods, geographic information system, geological data analysis, groundwater engineering or modeling, hydrothermal geochemistry, isotope geochemistry, physical chemistry, microbiology, mineralogy, organic geochemistry, and thermodynamics. This selection of courses must include at least one laboratory course.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEEN560</td>
<td>MOLECULAR MICROBIAL ECOLOGY AND THE ENVIRONMENT</td>
<td>3.0</td>
</tr>
<tr>
<td>CHGC504</td>
<td>METHODS IN GEOCHEMISTRY</td>
<td>3.0</td>
</tr>
<tr>
<td>CHGC555</td>
<td>ENVIRONMENTAL ORGANIC CHEMISTRY</td>
<td>3.0</td>
</tr>
<tr>
<td>CHGN503</td>
<td>ADV PHYSICAL CHEMISTRY I</td>
<td>3.0</td>
</tr>
<tr>
<td>GEGN530</td>
<td>CLAY CHARACTERIZATION</td>
<td>2.0</td>
</tr>
<tr>
<td>GEGN532</td>
<td>GEOLOGICAL DATA ANALYSIS</td>
<td>3.0</td>
</tr>
<tr>
<td>GEGN575</td>
<td>APPLICATIONS OF GEOGRAPHIC INFORMATION SYSTEMS</td>
<td>3.0</td>
</tr>
<tr>
<td>GEGN581</td>
<td>ANALYTICAL HYDROLOGY</td>
<td>3.0</td>
</tr>
<tr>
<td>GEGN583</td>
<td>MATHEMATICAL MODELING OF GROUNDWATER SYSTEMS</td>
<td>3.0</td>
</tr>
<tr>
<td>GEGN586</td>
<td>NUMERICAL MODELING OF GEOCHEMICAL SYSTEMS</td>
<td>3.0</td>
</tr>
<tr>
<td>GEOL535</td>
<td>LITHO ORE FORMING PROCESSES</td>
<td>1.0</td>
</tr>
<tr>
<td>GEOL540</td>
<td>ISOTOPE GEOCHEMISTRY AND GEOCHRONOLOGY</td>
<td>3.0</td>
</tr>
</tbody>
</table>

An additional 6 credit-hours of free electives may be selected to complete the 30 credit-hour requirement. Free electives may be selected from the course offerings of the Department of Geology and Geological Engineering, the Department of Chemistry and Geochemistry, or the Department of Civil and Environmental Engineering, and may also be independent study credits taken to fulfill a research cooperative, or other professional development experience. A course program will be designed in advanced through consultation between the student and an advisor from the Geochemistry Committee of the Whole.

Mines’ Combined Undergraduate / Graduate Degree Program
Students enrolled in Mines’ combined undergraduate/graduate program (meaning uninterrupted registration from the time the student earns a Mines undergraduate degree to the time the student begins a Mines graduate degree) may double count up to six hours of credits which were used in fulfilling the requirements of their undergraduate degree at Mines, towards their graduate program. Any 400+ level courses that count towards the undergraduate degree requirements as “Elective Coursework” or any 500+ level course, may be used for the purposes of double counting at the discretion of the graduate advisor. These courses must have been passed with a “B-” or better, not be substitutes for required coursework, and meet all other University, Department, Division, and Program requirements for graduate credit.

Courses

CHGC503. INTRODUCTION TO GEOCHEMISTRY. 3.0 Semester Hrs.
(I) A comprehensive introduction to the basic concepts and principles of geochemistry, coupled with a thorough overview of the related principles of thermodynamics. Topics covered include: nucleosynthesis, origin of earth and solar system, chemical bonding, mineral chemistry, elemental distributions and geochemical cycles, chemical equilibrium and kinetics, isotope systematics, and organic and biogeochemistry. Prerequisite: Introductory chemistry, mineralogy and petrology. 3 hours lecture; 3 semester hours.

CHGC504. METHODS IN GEOCHEMISTRY. 3.0 Semester Hrs.
(II) Field sampling of natural earth materials including rocks, soils, sediments, and waters. Preparation of naturally heterogeneous materials, digestions, and partial chemical extractions. Principles of instrumental analysis including trace elemental analysis by ICP-atomic spectroscopy, isotope analysis by ICP-MS, EM/X-ray methods, and chromatography. Quality assurance and quality control. Interpretation and assessment of geochemical data using statistical methods. Course format is hands-on, project oriented. Prerequisite: Graduate standing in geochemistry or environmental science and engineering. 2 hours lecture, 3 hours lab; 3 semester hours.

CHGC505. INTRODUCTION TO ENVIRONMENTAL CHEMISTRY. 3.0 Semester Hrs.
Equivalent with CHGN403,
(II) Processes by which natural and anthropogenic chemicals interact, react, and are transformed and redistributed in various environmental compartments. Air, soil, and aqueous (fresh and saline surface and groundwaters) environments are covered, along with specialized environments such as waste treatment facilities and the upper atmosphere. Meets with CHGN403. CHGN403 and CHGC505 may not both be taken for credit. Prerequisites: GEGN101, CHGN122 and CHGN209 or CBEN210. 3 hours lecture; 3 semester hours.
A study of organic carbonaceous materials in relation to the genesis of petroleum, tar sands, and coal. The course will emphasize the characterization of organic matter in these systems, with an emphasis on chemical transformations of anthropogenic organic contaminants. Prerequisites: A course in organic chemistry and CHGN503, Advanced Physical Chemistry or its equivalent. Offered in alternate years. 3 hours lecture; 3 semester hours.

CHGC562. MICROBIOLOGY AND THE ENVIRONMENT. 3.0 Semester Hrs.

This course will cover the basic fundamentals of microbiology, such as structure and function of procaryotic versus euarchyotic cells; viruses; classification of micro-organisms; microbial metabolism, energetics, genetics, growth and diversity; microbial interactions with plants, animals, and other microbes. Additional topics covered will include various aspects of environmental microbiology such as global biogeochemical cycles, bioleaching, bioremediation, and wastewater treatment. Prerequisite: ESGN301. 3 hours lecture, 3 semester hours. Offered alternate years.

CHGC563. ENVIRONMENTAL MICROBIOLOGY. 2.0 Semester Hrs.

An introduction to the microorganisms of major geochemical importance, as well as those of primary importance in water pollution and waste treatment. Microbes and sedimentation, microbial leaching of metals from ores, acid mine water pollution, and the microbial ecology of marine and freshwater habitats are covered. Prerequisite: none. 1 hour lecture, 3 hours lab; 2 semester hours. Offered alternate years.

CHGC564. BIOGEOCHEMISTRY AND GEOMICROBIOLOGY. 3.0 Semester Hrs.

Designed to give the student an understanding of the role of living things, particularly microorganisms, in the shaping of the earth. Among the subjects will be the aspects of living processes, chemical composition and characteristics of biological material, origin of life, role of microorganisms in weathering of rocks and the early diagenesis of sediments, and the origin of petroleum, oil shale, and coal. Prerequisite: none. 3 hours lecture; 3 semester hours.

CHGC562. MICROBIOLOGY AND THE ENVIRONMENT. 3.0 Semester Hrs.

This course will cover the basic fundamentals of microbiology, such as structure and function of procaryotic versus euarchyotic cells; viruses; classification of micro-organisms; microbial metabolism, energetics, genetics, growth and diversity; microbial interactions with plants, animals, and other microbes. Additional topics covered will include various aspects of environmental microbiology such as global biogeochemical cycles, bioleaching, bioremediation, and wastewater treatment. Prerequisite: ESGN301. 3 hours lecture, 3 semester hours. Offered alternate years.

CHGC563. ENVIRONMENTAL MICROBIOLOGY. 2.0 Semester Hrs.

An introduction to the microorganisms of major geochemical importance, as well as those of primary importance in water pollution and waste treatment. Microbes and sedimentation, microbial leaching of metals from ores, acid mine water pollution, and the microbial ecology of marine and freshwater habitats are covered. Prerequisite: none. 1 hour lecture, 3 hours lab; 2 semester hours. Offered alternate years.

CHGC564. BIOGEOCHEMISTRY AND GEOMICROBIOLOGY. 3.0 Semester Hrs.

Designed to give the student an understanding of the role of living things, particularly microorganisms, in the shaping of the earth. Among the subjects will be the aspects of living processes, chemical composition and characteristics of biological material, origin of life, role of microorganisms in weathering of rocks and the early diagenesis of sediments, and the origin of petroleum, oil shale, and coal. Prerequisite: none. 3 hours lecture; 3 semester hours.

CHGC562. MICROBIOLOGY AND THE ENVIRONMENT. 3.0 Semester Hrs.

This course will cover the basic fundamentals of microbiology, such as structure and function of procaryotic versus euarchyotic cells; viruses; classification of micro-organisms; microbial metabolism, energetics, genetics, growth and diversity; microbial interactions with plants, animals, and other microbes. Additional topics covered will include various aspects of environmental microbiology such as global biogeochemical cycles, bioleaching, bioremediation, and wastewater treatment. Prerequisite: ESGN301. 3 hours lecture, 3 semester hours. Offered alternate years.

CHGC563. ENVIRONMENTAL MICROBIOLOGY. 2.0 Semester Hrs.

An introduction to the microorganisms of major geochemical importance, as well as those of primary importance in water pollution and waste treatment. Microbes and sedimentation, microbial leaching of metals from ores, acid mine water pollution, and the microbial ecology of marine and freshwater habitats are covered. Prerequisite: none. 1 hour lecture, 3 hours lab; 2 semester hours. Offered alternate years.

CHGC564. BIOGEOCHEMISTRY AND GEOMICROBIOLOGY. 3.0 Semester Hrs.

Designed to give the student an understanding of the role of living things, particularly microorganisms, in the shaping of the earth. Among the subjects will be the aspects of living processes, chemical composition and characteristics of biological material, origin of life, role of microorganisms in weathering of rocks and the early diagenesis of sediments, and the origin of petroleum, oil shale, and coal. Prerequisite: none. 3 hours lecture; 3 semester hours.

CHGC562. MICROBIOLOGY AND THE ENVIRONMENT. 3.0 Semester Hrs.

This course will cover the basic fundamentals of microbiology, such as structure and function of procaryotic versus euarchyotic cells; viruses; classification of micro-organisms; microbial metabolism, energetics, genetics, growth and diversity; microbial interactions with plants, animals, and other microbes. Additional topics covered will include various aspects of environmental microbiology such as global biogeochemical cycles, bioleaching, bioremediation, and wastewater treatment. Prerequisite: ESGN301. 3 hours lecture, 3 semester hours. Offered alternate years.

CHGC563. ENVIRONMENTAL MICROBIOLOGY. 2.0 Semester Hrs.

An introduction to the microorganisms of major geochemical importance, as well as those of primary importance in water pollution and waste treatment. Microbes and sedimentation, microbial leaching of metals from ores, acid mine water pollution, and the microbial ecology of marine and freshwater habitats are covered. Prerequisite: none. 1 hour lecture, 3 hours lab; 2 semester hours. Offered alternate years.

CHGC564. BIOGEOCHEMISTRY AND GEOMICROBIOLOGY. 3.0 Semester Hrs.

Designed to give the student an understanding of the role of living things, particularly microorganisms, in the shaping of the earth. Among the subjects will be the aspects of living processes, chemical composition and characteristics of biological material, origin of life, role of microorganisms in weathering of rocks and the early diagenesis of sediments, and the origin of petroleum, oil shale, and coal. Prerequisite: none. 3 hours lecture; 3 semester hours.

CHGC562. MICROBIOLOGY AND THE ENVIRONMENT. 3.0 Semester Hrs.

This course will cover the basic fundamentals of microbiology, such as structure and function of procaryotic versus euarchyotic cells; viruses; classification of micro-organisms; microbial metabolism, energetics, genetics, growth and diversity; microbial interactions with plants, animals, and other microbes. Additional topics covered will include various aspects of environmental microbiology such as global biogeochemical cycles, bioleaching, bioremediation, and wastewater treatment. Prerequisite: ESGN301. 3 hours lecture, 3 semester hours. Offered alternate years.

CHGC563. ENVIRONMENTAL MICROBIOLOGY. 2.0 Semester Hrs.

An introduction to the microorganisms of major geochemical importance, as well as those of primary importance in water pollution and waste treatment. Microbes and sedimentation, microbial leaching of metals from ores, acid mine water pollution, and the microbial ecology of marine and freshwater habitats are covered. Prerequisite: none. 1 hour lecture, 3 hours lab; 2 semester hours. Offered alternate years.

CHGC564. BIOGEOCHEMISTRY AND GEOMICROBIOLOGY. 3.0 Semester Hrs.

Designed to give the student an understanding of the role of living things, particularly microorganisms, in the shaping of the earth. Among the subjects will be the aspects of living processes, chemical composition and characteristics of biological material, origin of life, role of microorganisms in weathering of rocks and the early diagenesis of sediments, and the origin of petroleum, oil shale, and coal. Prerequisite: none. 3 hours lecture; 3 semester hours.
CHGC699. INDEPENDENT STUDY. 0.5-6 Semester Hr.
(I, II, S) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: Independent Study form must be completed and submitted to the Registrar. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/ experience and maximums vary by department. Contact the Department for credit limits toward the degree.

Professors
Linda A. Figueroa, Civil and Environmental Engineering
Wendy J. Harrison, Geology and Geological Engineering
John McCray, Civil and Environmental Engineering
James F. Ranville, Chemistry
John R. Spear, Civil and Environmental Engineering
Bettina M. Voelker, Chemistry
Richard F. Wendlandt, Geology and Geological Engineering

Associate Professors
Christopher P. Higgins, Civil and Environmental Engineering
Thomas Monecke, Geology and Geological Engineering
Alexis Navarre-Sitchler, Department of Geology and Geological Engineering
Jonathan O. Sharp, Civil and Environmental Engineering

Assistant Professors
Alexander Gysi, Geology and Geological Engineering

Professors Emeriti
John B. Curtis, Geology and Geological Engineering
Donald L. Macalady, Chemistry and Geochemistry
Patrick MacCarthy, Chemistry and Geochemistry
Samuel B. Romberger, Geology and Geological Engineering
Thomas R. Wildeman, Chemistry and Geochemistry

Associate Professors Emeriti
L. Graham Closs, Geology and Geological Engineering
E. Craig Simmons, Chemistry and Geochemistry