Nuclear Engineering

Degrees Offered

- Master of Engineering (Nuclear Engineering)
- Master of Science (Nuclear Engineering)
- Doctor of Philosophy (Nuclear Engineering)

Program Description

The Nuclear Science and Engineering program at the Colorado School of Mines is interdisciplinary in nature and draws contributions from departments across the university. While delivering a traditional Nuclear Engineering course core, the School of Mines program in Nuclear Science and Engineering emphasizes the nuclear fuel life cycle. Faculty bring to the program expertise in all aspects of the nuclear fuel life cycle; fuel exploration and processing, nuclear power systems production, design and operation, fuel recycling, storage and waste remediation, radiation detection and radiation damage as well as the policy issues surrounding each of these activities. Related research is conducted through the Nuclear Science and Engineering Center.

Students in all three Nuclear Engineering degrees are exposed to a broad systems overview of the complete nuclear fuel cycle as well as obtaining detailed expertise in a particular component of the cycle. Breadth is assured by requiring all students to complete a rigorous set of core courses. The core consists of a 13 credit-hour course sequence. The remainder of the course and research work is obtained from the multiple participating departments, as approved for each student by the student's advisor and the student's thesis committee (as appropriate).

The Master of Engineering degree is a non-thesis graduate degree intended to supplement the student's undergraduate degree by providing the core knowledge needed to prepare the student to pursue a career in the nuclear energy field. The Master of Science and Doctor of Philosophy degrees are thesis-based degrees that emphasize research.

In addition, students majoring in allied fields may complete a minor degree through the Nuclear Science and Engineering Program, consisting of 12 credit hours of coursework. The Nuclear Science and Engineering Minor programs are designed to allow students in allied fields to acquire and then indicate, in a formal way, specialization in a nuclear-related area of expertise.

Program Requirements

The Nuclear Science and Engineering Program offers programs of study leading to three graduate degrees:

Master of Engineering (ME)

<table>
<thead>
<tr>
<th>Core courses</th>
<th>13.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective core courses</td>
<td>12.0</td>
</tr>
<tr>
<td>Additional elective courses</td>
<td>3.0</td>
</tr>
<tr>
<td>Nuclear Science and Engineering Seminar</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Total Semester Hrs 30.0

Master of Science (MS)

<table>
<thead>
<tr>
<th>Core courses</th>
<th>13.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective core courses</td>
<td>6.0</td>
</tr>
<tr>
<td>Nuclear Science and Engineering Seminar</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Total Semester Hrs 36.0

MS students must complete and defend a research thesis in accordance with this Graduate catalog and the Nuclear Science and Engineering Thesis Procedures (https://nuclear.mines.edu/graduate-programs/).

The student must complete the preparation and defense of a Thesis Proposal as described by the Nuclear Science and Engineering Proposal Procedures (https://nuclear.mines.edu/graduate-programs/) at least one semester before the student defends his or her MS thesis.

Doctor of Philosophy (PhD)

<table>
<thead>
<tr>
<th>Core courses</th>
<th>13.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective core courses</td>
<td>12.0</td>
</tr>
<tr>
<td>Additional elective courses</td>
<td>3.0</td>
</tr>
<tr>
<td>Nuclear Science and Engineering Seminar</td>
<td>4.0</td>
</tr>
<tr>
<td>Graduate research (minimum)</td>
<td>24.0</td>
</tr>
<tr>
<td>Graduate research or elective courses</td>
<td>16.0</td>
</tr>
</tbody>
</table>

Total Semester Hrs 72.0

PhD students must successfully complete the program's quality control process.

The PhD quality control process includes the following:

- Prior to admission to candidacy, the student must complete all of the Nuclear Engineering required core and elective core classes;
- Prior to admission to candidacy, the student must pass a qualifying examination in accordance with the Nuclear Science and Engineering Qualifying Exam Procedures (https://nuclear.mines.edu/graduate-programs/);
- A PhD thesis proposal must be presented to, and accepted by, the student's thesis committee in accordance with the Nuclear Science and Engineering Proposal Procedures (https://nuclear.mines.edu/graduate-programs/); and
- The student must complete and defend a PhD thesis in accordance with this Graduate catalog and the Nuclear Science and Engineering Thesis Procedures (https://nuclear.mines.edu/graduate-programs/).

Thesis Committee Requirements

The student's thesis committee must meet the general requirements listed in the Graduate Bulletin section on Graduate Degrees and Requirements (catalog.mines.edu/graduate-programs/). In addition, the student's advisor or co-advisor must be an active faculty member of Mines Nuclear Science and Engineering Program. For MS students, at least two, and for PhD students, at least three, committee members must be faculty members of the Nuclear Science and Engineering Program and must come from at least two different departments. At least one member of the PhD committee must be a faculty member from outside the Nuclear Science and Engineering Program.

Required Curriculum

In order to be admitted to the Nuclear Science and Engineering Graduate Degree Program, students must meet the following minimum requirements:

- baccalaureate degree in a science or engineering discipline from an accredited program
• mathematics coursework up to and including differential equations
• coursework in thermodynamics
• ENGY498, Introduction to Nuclear Engineering (or equivalent).

Students who do not meet these minimum requirements may be admitted with specified coursework to be completed in the first semesters of the graduate program. These introductory courses will be selected in consultation with the student’s graduate advisor.

All degree offerings within the Nuclear Science and Engineering program are based on a set of required and elective core courses. The required core classes are:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUGN510</td>
<td>INTRODUCTION TO NUCLEAR REACTOR PHYSICS</td>
<td>3.0</td>
</tr>
<tr>
<td>NUGN520</td>
<td>INTRODUCTION TO NUCLEAR REACTOR THERMAL-HYDRAULICS</td>
<td>3.0</td>
</tr>
<tr>
<td>NUGN580</td>
<td>NUCLEAR REACTOR LABORATORY (taught in collaboration with the USGS)</td>
<td>3.0</td>
</tr>
<tr>
<td>NUGN585 & NUGN586</td>
<td>NUCLEAR REACTOR DESIGN I and NUCLEAR REACTOR DESIGN II</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Total Semester Hrs: 13.0

Additionally, students pursuing a Nuclear Engineering graduate degree must take a certain number of courses from the elective core (four for a ME, two for a MS and three for a PhD). The core electives consist of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTGN593</td>
<td>NUCLEAR MATERIALS SCIENCE AND ENGINEERING</td>
<td>3.0</td>
</tr>
<tr>
<td>PHGN504</td>
<td>RADIATION DETECTION AND MEASUREMENT</td>
<td>3.0</td>
</tr>
<tr>
<td>CHGN511</td>
<td>APPLIED RADIOCHEMISTRY</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN592</td>
<td>RISK AND RELIABILITY ENGINEERING ANALYSIS AND DESIGN</td>
<td>3.0</td>
</tr>
<tr>
<td>NUGN506</td>
<td>NUCLEAR FUEL CYCLE</td>
<td>3.0</td>
</tr>
<tr>
<td>NUGN590</td>
<td>COMPUTATIONAL REACTOR PHYSICS</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Total Semester Hrs: 12.0

Additionally, a 400- or 500-level Nuclear Physics class counts towards the credit hours required to fulfill core elective requirements. This is optional for Masters degrees but required for a PhD degree.

Students will select additional coursework in consultation with their graduate advisor and their thesis committee (where applicable). Through these additional courses, students gain breadth and depth in their knowledge in the Nuclear Engineering industry.

Students seeking MS and PhD degrees are required to complete the minimum research credit hour requirements ultimately leading to the completion and defense of a thesis. Research is conducted under the direction of a member of Mines Nuclear Science and Engineering faculty and could be tied to a research opportunity provided by industry partners.

Graduate Seminar

Full-time graduate students in the Nuclear Science and Engineering Program are expected to maintain continuous enrollment in Nuclear Science and Engineering Seminar. Students who are concurrently enrolled in a different degree program that also requires seminar attendance may have this requirement waived at the discretion of the Program Director.

Nuclear Engineering Combined Degree Program Option

Mines undergraduate students have the opportunity to begin work on a ME or MS degree in Nuclear Engineering while completing their Bachelor’s degree. The Nuclear Engineering Combined Degree Program provides the vehicle for students to use up to 6 credit hours of undergraduate coursework as part of their Nuclear Engineering Graduate Degree curriculum, as well as the opportunity to take additional graduate courses while completing their undergraduate degree. Students in the Nuclear Engineering Combined Degree Program are expected to apply for admission to the graduate program by the beginning of their Senior Year. For more information please contact the Nuclear Science and Engineering Program Director.

Minor Degree Programs

Students majoring in allied fields may choose to complete minor degree programs through the Nuclear Science and Engineering Program indicating specialization in a nuclear-related area of expertise. Minor programs require completion of 9 credit hours of approved coursework (Masters degree), or 12 credit hours of approved coursework (Ph.D).

Existing minors and their requirements are as follows, with the first three courses listed being required for a Masters degree, and the last being an additional requirement for a Ph.D. degree:

Nuclear Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUGN510</td>
<td>INTRODUCTION TO NUCLEAR REACTOR PHYSICS</td>
<td>3.0</td>
</tr>
<tr>
<td>NUGN520</td>
<td>INTRODUCTION TO NUCLEAR REACTOR THERMAL-HYDRAULICS</td>
<td>3.0</td>
</tr>
<tr>
<td>NUGN580</td>
<td>NUCLEAR REACTOR LABORATORY</td>
<td>3.0</td>
</tr>
<tr>
<td>MTGN598</td>
<td>SPECIAL TOPICS IN METALLURGICAL AND MATERIALS ENGINEERING (Nuclear Materials Politics and Public Policy)</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Total Semester Hrs: 12.0

Nuclear Materials Processing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUGN510</td>
<td>INTRODUCTION TO NUCLEAR REACTOR PHYSICS</td>
<td>3.0</td>
</tr>
<tr>
<td>MTGN593</td>
<td>NUCLEAR MATERIALS SCIENCE AND ENGINEERING</td>
<td>3.0</td>
</tr>
<tr>
<td>MTGN591</td>
<td>PHYSICAL PHENOMENA OF COATING PROCESSES</td>
<td>3.0</td>
</tr>
<tr>
<td>CHGN511 or MTGN598</td>
<td>APPLIED RADIOCHEMISTRY SPECIAL TOPICS IN METALLURGICAL AND MATERIALS ENGINEERING</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Total Semester Hrs: 12.0

Nuclear Detection

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHGN422</td>
<td>NUCLEAR PHYSICS</td>
<td>3.0</td>
</tr>
<tr>
<td>NUGN510</td>
<td>INTRODUCTION TO NUCLEAR REACTOR PHYSICS</td>
<td>3.0</td>
</tr>
<tr>
<td>PHGN504</td>
<td>RADIATION DETECTION AND MEASUREMENT</td>
<td>3.0</td>
</tr>
<tr>
<td>NUGN580</td>
<td>NUCLEAR REACTOR LABORATORY</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Total Semester Hrs: 12.0
Courses

NUGN505. NUCLEAR SCIENCE AND ENGINEERING SEMINAR. 1.0 Semester Hr.
(I, II) The Nuclear Science and Engineering Seminar provides a forum for
Nuclear Engineering graduate students to present their research projects,
participate in seminars given by Nuclear Science and Engineering
professionals, and develop an enhanced understanding of the breadth
of the nuclear engineering discipline. Prerequisite: graduate standing. 1
hour seminar; 1 semester hour. Repeatable; maximum 2 hours granted
towards M.S./M.E. Degree Requirements and 4 hours maximum granted
towards Ph.D. Requirements.

NUGN506. NUCLEAR FUEL CYCLE. 3.0 Semester Hrs.
(I) An introduction to nuclear energy emphasizing the science,
engineering, and policies underlying the systems and processes involved
in energy production by nuclear fission. Students will acquire a broad
understanding of nuclear energy systems framed in the context of the fuel
used to power nuclear reactors. 3 hours lecture; 3 semester hours.

NUGN510. INTRODUCTION TO NUCLEAR REACTOR PHYSICS. 3.0 Semester Hrs.
Bridges the gap between courses in fundamental nuclear physics and
the neutronic design and analysis of nuclear reactors. Review of neutron
energetics and reactions; nuclear cross sections; neutron induced
fission; neutron life cycle, multiplication, and criticality; nuclear reactor
kinetics and control; the diffusion approximation for neutron transport;
simple reactor geometries and compositions; modeling and simulation of
reactors. Prerequisite: ENGY498 or equivalent.

NUGN520. INTRODUCTION TO NUCLEAR REACTOR THERMAL-
HYDRAULICS. 3.0 Semester Hrs.
Bridges the gap between fundamental courses in thermodynamics, fluid
flow, and heat transfer and the thermal-hydraulic design and analysis of
nuclear reactors. Provides a comprehensive introduction to the thermal-
hydraulics of each of the major classes of nuclear reactors. Introduces
the major thermal-hydraulic computational tools, passively safe reactor
design, thermal-hydraulic transient analysis, and severe nuclear reactor
accident analysis. Prerequisite: ENGY498 or equivalent.

NUGN535. INTRODUCTION TO HEALTH PHYSICS. 3.0 Semester Hrs.
(I) Health physics evaluates effects of ionizing radiation on biological
systems for the safe use of radiation and control of potential health
hazards. The core concept is dosimetry, which relates the radiation
absorbed externally and internally to a quantitative estimate of health
effects. Other areas in health physics such as protection standards,
regulations, and radiation diagnosis and therapy are all constructed on
dosimetric methods.

NUGN580. NUCLEAR REACTOR LABORATORY. 3.0 Semester Hrs.
(I) Provides hands-on experience with a number of nuclear reactor
operations topics. Reactor power calibration; gamma spectroscopy;
nuclear activation analysis; reactor flux and power profiles; reactor
criticality; control rod worth; xenon transients and burnout; reactor
pulsing. Taught at the USGS TRIGA reactor. Prerequisite: NUGN510. 3
hours laboratory; 3 semester hours.

NUGN585. NUCLEAR REACTOR DESIGN I. 2.0 Semester Hrs.
Provides a basic understanding of the nuclear reactor design process,
including: key features of nuclear reactors; nuclear reactor design
principles; identification of design drivers; neutronic and thermal-hydraulic
design of nuclear reactors; reactor safety considerations; relevant nuclear
engineering computer codes. Prerequisite: NUGN510, NUGN520.

NUGN586. NUCLEAR REACTOR DESIGN II. 2.0 Semester Hrs.
(II) Builds on the design experience obtained in NUGN586 to provide
an in-depth understanding of the nuclear reactor design process.
Prerequisites: NUGN585 (taken in the same academic year). 2 hours
lecture; 2 semester hours.

NUGN590. COMPUTATIONAL REACTOR PHYSICS. 3.0 Semester Hrs.
(I) This course will provide an introduction to computational nuclear
reactor physics. Students will understand the physics driving neutron
cross sections and how they determined, and how neutron transport
calculations are completed using Monte Carlo and finite difference
methods. Students will learn how to write modular code using
professional software engineering practices, and will have an introduction
to the Serpent and MCNP family of transport codes. 3 hours lecture; 3
semester hours.

NUGN598. SPECIAL TOPICS. 6.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special
interests of instructor(s) and student(s). Usually the course is offered only
once, but no more than twice for the same course content. Prerequisite:
none. Variable credit: 0 to 6 credit hours. Repeatable for credit under
different titles.

NUGN599. INDEPENDENT STUDY IN NUCLEAR ENGINEERING. 0.5-6
Semester Hr.
(I, II, S) Individual research or special problem projects supervised
by a faculty member, also, when a student and instructor agree on a
subject matter, content, and credit hours. Prerequisite: ?Independent
Study? form must be completed and submitted to the Registrar. Variable
credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/
experience and maximums vary by department. Contact the Department
for credit limits toward the degree.

NUGN698. SPECIAL TOPICS. 6.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special
interests of instructor(s) and student(s). Usually the course is offered only
once, but no more than twice for the same course content. Prerequisite:
none. Variable credit: 0 to 6 credit hours. Repeatable for credit under
different titles.

NUGN699. INDEPENDENT STUDY IN NUCLEAR ENGINEERING. 0.5-6
Semester Hr.
(I, II, S) Individual research or special problem projects supervised
by a faculty member, also, when a student and instructor agree on a
subject matter, content, and credit hours. Prerequisite: ?Independent
Study? form must be completed and submitted to the Registrar. Variable
credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/
experience and maximums vary by department. Contact the Department
for credit limits toward the degree.

NUGN707. GRADUATE THESIS / DISSERTATION RESEARCH
CREDIT. 1-15 Semester Hr.
(I, II, S) Research credit hours required for completion of a Masters-level
thesis or Doctoral dissertation. Research must be carried out under the
direct supervision of the student's faculty advisor. Variable class and
semester hours. Repeatable for credit.

Program Director
Mark Jensen, Jerry and Tina Grandey University Chair in Nuclear
Science and Engineering, Department of Chemistry

Department of Chemistry

Jenifer Braley, Associate Professor
Mark Jensen, Professor and Jerry and Tina Grandey University Chair in Nuclear Science and Engineering

Department of Civil and Environmental Engineering
Linda Figueroa, Professor, Nuclear Science and Engineering Center Management Team Co-Chair

Department of Mechanical Engineering
Mark Deinert, Associate Professor
Andrew Osborne, Assistant Professor

Department of Metallurgical and Materials Engineering
Kip Findley, Associate Professor
Jeffrey King, Associate Professor, Nuclear Science and Engineering Center Management Team Chair
Ivar Reimanis, Professor and Herman F. Coors Distinguished Professor of Ceramic Engineering
Haitao Dong, Radiation Safety Officer

Department of Physics
Uwe Greife, Professor
Frederic Sarazin, Professor
Zeev Shayer, Research Professor

Division of Economics and Business
Roderick Eggert, Professor