Engineering, Design, and Society

Program Description

The Division of Engineering, Design, and Society (EDS) engages in research, education, and outreach that inspires and empowers engineers and applied scientists to become innovative and impactful leaders. Our specialization is in socio-technical design, problem definition, and problem solution, and we seek to educate future leaders who will address the challenges of attaining a thriving, sustainable global society.

EDS is home to:

Bachelor of Science in Engineering: The BSE is an interdisciplinary design engineering degree that focuses on the creation of innovative solutions to the challenging problems facing people, societies, and the world. Through a sequence of Integrated Design Studios that bridge first-year Cornerstone Design and senior-year Capstone Design, students become experts in design methods that deploy engineering principles to address human problems in real-world contexts. The BSE provides the flexibility for students to create specialized focus areas that suit their individual career and personal interests, and it ensures they gain practical engineering experience throughout their education at Mines.

Humanitarian Engineering: Mines’ Humanitarian Engineering (HE) program is recognized internationally for its research, education, and outreach in socially responsible engineering. At the undergraduate level, HE includes two minors, Engineering for Community Development and Leadership in Social Responsibility, along with a range of electives courses open to all Mines students. At the graduate level, our new interdisciplinary Humanitarian Engineering and Science program offers MS thesis and non-thesis degree options as well as a graduate certificate. HE enables Mines students to understand how engineering can contribute to co-creating just and sustainable solutions to the problems faced by communities globally.

Cornerstone Design@Mines: Cornerstone encompasses Design I (EDNS151) and Design II (EDNS251 or a similar second-year course). Design I, taken by all first-year Mines students, teaches open-ended problem solving, project management, professional communications, and teaming skills—all within a human-centered design framework. Design II, taken by approximately half of Mines sophomore engineering students, applies and advances lessons from Design I by responding to real-world engineering challenges.

Capstone Design@Mines: Capstone entails a culminating two-semester senior design sequence for most engineering students at Mines, including Civil Engineering, Electrical Engineering, Environmental Engineering, Mechanical Engineering, and the general Engineering degree programs. The Capstone program provides a unique client-sponsored, hands-on, interdisciplinary engineering project experience for Mines students.

Programs

Bachelor of Science in Engineering

The Bachelor of Science in Engineering (BSE) is a new design-focused engineering degree program at Mines that offers a rigorous, flexible, creative, interdisciplinary program of study. The BSE integrates:

1) The strength of Mines’ traditions in engineering, built upon the fundamentals of mathematics, science, and engineering analysis

2) The inspiration and applied skills of studio-based design education focusing on innovation, creativity, and technological advance

3) The insights and analytic perspectives of the humanities, arts, and social sciences to focus attention on the right problems and the best overall solutions

The BSE curriculum revolves around hands-on, project-based design studios every semester, culminating in Capstone Design. We offer a unique approach to design engineering through our Integrative Design Studios, which bridge technical, social, and creative approaches to problem definition and solution. Additionally, the BSE allows students to specialize in a Focus Area of their choice, enabling students to pursue depth of study in an area of personal interest. Focus areas span emerging technologies, the application of technology to underserved user groups, and the creation of new technology-driven startups. BSE program details and course offerings are included under the Major tab above.

Humanitarian Engineering (HE)

HE connects students with a passion for contributing to social and environmental problem solving to Mines faculty who lead the field of applying engineering to pressing social, environmental, and community challenges. Integrating engineering with social sciences and design, the HE program includes minors, BSE focus areas, and elective courses that teach students how to work with the communities they seek to serve by co-creating solutions that promote justice, responsibility, and sustainability. HE serves students from a wide range of disciplines and who have diverse career goals spanning NGOs, government agencies and research groups, start-up businesses, and established companies. Seminar-style courses offered by the Engineering, Design, and Society Division and the Humanities, Arts, and Social Sciences Division, along with selected technical electives offered by other academic units across campus, provide students a balance of breadth and depth in areas related to Humanitarian Engineering. Students may also wish to pursue one of the two minors in Humanitarian Engineering or a related BSE Focus Area in Community Development or Corporate Sustainability. Program details and course listings are available under the Minor tab above.

ENGINEERING FOR COMMUNITY DEVELOPMENT

The Minor in Engineering for Community Development (ECD) is an evolution of the country’s first minor in Humanitarian Engineering created by Mines in 2003. Designed specifically for engineers and applied scientists who want to serve communities, the ECD minor prepares students to become leaders in community development through engineering.

Graduates with the ECD minor can work at the US Peace Corps (see Mines Peace Corps Prep Program), community service NGOs, international organizations, or a range of companies hosting projects related to community development. The knowledge and skills learned through the ECD minor prepares graduates for any engineering job involving community engagement, cross-cultural work environments, or human-centered design.

The ECD minor is designed to fit with any degree program on campus. Please contact Professor Juan Lucena (jlucena@mines.edu) to sign up for the minor or for advice on course selection.
LEadership in social responsibility

The Minor in Leadership in Social Responsibility (LSR) is the country’s first undergraduate minor in social responsibility designed specifically for engineers and applied scientists. The LSR minor prepares Mines students to become leaders in promoting shared social, environmental, and economic value for companies and their stakeholders.

Graduates of the LSR minor are sought by corporate employers that desire engineers who are prepared to factor public perception and community acceptance into the decisions they make and the technologies and processes they design. Graduates will also be prepared to take jobs that focus on corporate social responsibility, stakeholder engagement, and sustainability.

The LSR minor is designed to fit with any degree program on campus. Please contact Professor Jessica Smith (jsmsmith@mines.edu) to sign up for the minor or for advice on course selection.

Cornerstone Design@Mines

Cornerstone Design teaches students how to solve complex, open-ended problems using design methods, critical thinking, and professional workplace skills. Students work in multidisciplinary teams to learn through doing, with an emphasis on defining and iterating problems through a holistic lens of technology, people, and environment. Students apply a human-centered design methodology to understand a problem from multiple perspectives before attempting to solve it. Instruction is hands-on and experimental, with the instructor serving as both teacher and mentor.

Design I (EDNS151) has students working in teams on a semester-long project, learning to communicate technical ideas and solutions visually, orally, in writing, and through prototype demonstrations. Design I introduces students to the human-centered design process, which includes exploration, ideation, solution concept development, and validation, while also ensuring their solutions are viable, desirable, feasible, and sustainable.

Design II (EDNS251 and related courses) builds on the foundation of Design I by having student teams manage a client relationship and use commercial design software to model, predict, and analyze solution concepts. Students should check with their degree program to determine whether Design II is stipulated or permissible for satisfying program requirements.

Capstone Design@Mines

The Capstone Design sequence offers a one-of-a-kind, creative, multidisciplinary, team-based design experience emerging from combined efforts in civil, electrical, mechanical, environmental, and general engineering. It is increasingly recognized within the engineering community that many of the grand challenges facing society today will only be met by multidisciplinary approaches. Capstone Design embraces the uniqueness of each disciplinary approach while enabling students to address real-world, interdisciplinary challenges. Capstone Design is comprised by a two-semester, senior-year course sequence: Senior Design I (EDNS491) and Senior Design II (EDNS492).

Capstone Design addresses ABET accreditation guidelines for the engineering design component of engineering program curricula:

- Assessment of the desirability, feasibility, and viability of proposed solutions

The Capstone Design Showcase celebrates the engineering educational achievements of participating students. This twice-yearly, campus-wide celebration offers students an opportunity to present the real-world, client-driven project work they have completed over the course of their senior year.

Bachelor of Science in Engineering

The Bachelor of Science in Engineering (BSE) is a flexible, interdisciplinary program of study combining:

1. The strength of a Mines’ technical degree with fundamentals coursework in mathematics, science, and engineering
2. An integrated educational experience spanning engineering, design, innovation, social sciences, and the humanities
3. A Focus Area allowing for a depth of study in an area of personal or career interest, such as innovation and emerging technologies, sustainability and socially responsible applications of engineering, or an individualized focus area at the intersection of technology and society.

These three components are brought together via:

4. A unique set of six Integrative Design Studios, culminating in the two-semester Capstone Design Studio.

The Integrative Design Studios teach students how to respond to authentic, open-ended problems by integrating diverse skills, perspectives, and disciplinary approaches. They also provide a broad set of design competencies that are applicable to solving problems in any domain. Students work on a wide variety of hands-on projects, individually and in teams, mastering the capacity to move creatively from ill-structured problems to concrete, innovative, human-centered solutions. Through this journey, students also develop a diverse project portfolio, illustrating their unique skills and individual identity as a design engineer.

In parallel with the experiential design approach of the integrative design studios, students have great flexibility in selecting engineering fundamentals and electives courses from a wide variety of engineering disciplines. This flexibility allows students to prepare for their chosen Focus Area or to chart their own engineering, innovation, or design pathways.

The program also includes a design practicum experience (EDNS392) for students to develop real-world work experience prior to their senior year and the selection of their Capstone Design@Mines project. This opportunity encourages students to explore career options early. It also helps them better understand how their individual design expertise can contribute to a variety of engineering problems, organizational needs, and multidisciplinary teams. Together, the key components of the program promote a “design early, design often, design real” approach to engineering education.

Program Educational Outcomes

Within several years of completing the degree, graduates with a Bachelor of Science in Engineering will be engaged in progressively more responsible positions as:

Innovators who are comfortable taking risks and who are energized by the belief that engineers help make the world a better place by improving
people’s lives through technologies designed with and for people and the planet.

Design Thinkers who confidently approach engineering problems from a human and nature-centric perspective and identify multiple design solutions before converging on improvements and results that balance technical, economic, environmental, and societal goals.

Impact Makers who are much more than “just” engineers, with a broad perspective to responsibly envision, design, and implement new technologies that make a positive impact on people, organizations, the environment, and society.

Student Outcomes
Graduates of the program will have attained ABET Student Outcomes 1-7.

Curriculum
The curriculum comprises six groups of coursework and experiential learning for a total of 133.5 credits:

Group 1
The Core Curriculum
Mathematics and the Basic Sciences 23.5
Physical Activity 2.0
Freshman Orientation and Success 0.5
Free Electives 9.0

Group 2
Humanities & Social Science (H&SS) Requirement
Communication 3.0
Economics 3.0
Humanities & Social Science (H&SS) Mid-Level Electives 6.0
Humanities & Social Science (H&SS) 400-Level Elective 3.0

Group 3
Distributed Science Requirement
PHGN200 PHYSICS II-ELECTROMAGNETISM AND OPTICS 4.5
CSCI101 INTRODUCTION TO COMPUTER SCIENCE 3.0
or MATH201 PROBABILITY AND STATISTICS FOR ENGINEERS
or CHGN122 PRINCIPLES OF CHEMISTRY II (SC1)
or CHGN125 MOLECULAR ENGINEERING & MATERIALS CHEMISTRY
or CSCI101 INTRODUCTION TO COMPUTER SCIENCE
or GEGN101 EARTH AND ENVIRONMENTAL SYSTEMS
or MATH201 PROBABILITY AND STATISTICS FOR ENGINEERS

Group 4
Engineering Coursework Requirements
Engineering Fundamentals (Statics, Circuits, Fluid Mechanics, Thermodynamics, Materials) 15.0
Engineering Electives 15.0

Group 5
Integrative Design Studios
Freshman Design Studio 7.0
Sophomore Design Studio 6.0
Junior Design Studio 3.0
Junior Field Session 3.0

Group 6
Focus Area and Capstone Design
Focus Area Coursework 18.0
Capstone Senior Design Studio 6.0

The BSE degree program offers students a combination of courses that includes core mathematics, basic and advanced sciences, engineering fundamentals, and foundational studies in the social sciences and humanities throughout the freshman and sophomore years.

There is strong alignment of the initial course sequence between this degree program and other engineering degree programs at Mines, allowing smooth entry into the Bachelor of Science in Engineering degree program at any time during the first two years.

In the junior and senior years, students complete fundamental engineering courses across the breadth of traditional engineering disciplines and pursue advanced disciplinary studies through additional engineering electives, emphasizing engineering’s breadth as well as commonalities among different engineering disciplines. Integrated with their technical studies, students learn about the many human dimensions of defining and solving problems using perspectives and approaches from the social sciences, humanities, and design, including the creative, social, cultural, political (including policy), economic, and business components critical for understanding the big challenges facing society and the environment today.

A central component of this degree program is the extensive application of technical and non-technical skillsets in response to real-world problems throughout the Integrative Design Studios. This approach increases and solidifies students’ understanding of the content from their other courses. The Integrative Design Studio culminates in the Capstone Design Studio sequence, where students draw together the entirety of their educational experience to solve client-sponsored engineering problems in specific areas of student interest.

Bachelor of Science in Engineering: Degree Requirements

<table>
<thead>
<tr>
<th>Group</th>
<th>Coursework Requirements</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>FRESHMAN SUCCESS SEMINAR</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>MATH111 CALCULUS FOR SCIENTISTS AND ENGINEERS I</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>CHGN121 PRINCIPLES OF CHEMISTRY I</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>EDNS200 COMMUNICATION</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>EDNS191 INTEGRATIVE DESIGN STUDIO IA</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>PAGN PHYSICAL ACTIVITY COURSE</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>lec</td>
</tr>
<tr>
<td>CSM101</td>
<td>FRESHMAN SUCCESS SEMINAR</td>
</tr>
<tr>
<td>MATH111</td>
<td>CALCULUS FOR SCIENTISTS AND ENGINEERS I</td>
</tr>
<tr>
<td>CHGN121</td>
<td>PRINCIPLES OF CHEMISTRY I</td>
</tr>
<tr>
<td>EDNS200</td>
<td>COMMUNICATION</td>
</tr>
<tr>
<td>EDNS191</td>
<td>INTEGRATIVE DESIGN STUDIO IA</td>
</tr>
<tr>
<td>PAGN</td>
<td>PHYSICAL ACTIVITY COURSE</td>
</tr>
</tbody>
</table>

16.0
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>lec</th>
<th>lab</th>
<th>sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>MATH112</td>
<td>CALCULUS FOR SCIENTISTS AND ENGINEERS II</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHGN100</td>
<td>PHYSICS I - MECHANICS</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSCI101</td>
<td>INTRODUCTION TO COMPUTER SCIENCE or MATH 201</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EDNS192</td>
<td>INTEGRATIVE DESIGN STUDIO IB</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PAGN</td>
<td>PHYSICAL ACTIVITY COURSE</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.0</td>
</tr>
<tr>
<td>Sophomore</td>
<td>MATH213</td>
<td>CALCULUS FOR SCIENTISTS AND ENGINEERS III</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHGN200</td>
<td>PHYSICS II - ELECTROMAGNETISM AND OPTICS</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH201</td>
<td>PROBABILITY AND STATISTICS FOR ENGINEERS, CBEN 110, CHGN 122, CHGN 125, CSCI 101, or GEGN 101</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EDNS291</td>
<td>INTEGRATIVE DESIGN STUDIO IIA</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECTIVE</td>
<td>HUMANITIES & SOCIAL SCIENCE (H&SS) Mid-Level Restricted Elective</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PAGN</td>
<td>PHYSICAL ACTIVITY COURSE</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.0</td>
</tr>
<tr>
<td>Spring</td>
<td>MATH225</td>
<td>DIFFERENTIAL EQUATIONS</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHGN209</td>
<td>INTRODUCTION TO CHEMICAL THERMODYNAMICS, CBEN 210, or MEGN 361</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEEN241</td>
<td>STATICS</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EDNS292</td>
<td>INTEGRATIVE DESIGN STUDIO IIB</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGR</td>
<td>ENGINEERING ELECTIVE</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PAGN</td>
<td>PHYSICAL ACTIVITY COURSE</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.0</td>
</tr>
<tr>
<td>Junior</td>
<td>MTGN202</td>
<td>ENGINEERED MATERIALS or CEEN 311</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBGN201</td>
<td>PRINCIPLES OF ECONOMICS</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EENG281</td>
<td>INTRODUCTION TO ELECTRICAL CIRCUITS, ELECTRONICS AND POWER or 282</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGR</td>
<td>ENGINEERING ELECTIVE</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.5</td>
</tr>
<tr>
<td>Fall</td>
<td>MTGN202</td>
<td>ENGINEERED MATERIALS or CEEN 311</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBGN201</td>
<td>PRINCIPLES OF ECONOMICS</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EENG281</td>
<td>INTRODUCTION TO ELECTRICAL CIRCUITS, ELECTRONICS AND POWER or 282</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGR</td>
<td>ENGINEERING ELECTIVE</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PAGN</td>
<td>PHYSICAL ACTIVITY COURSE</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.0</td>
</tr>
</tbody>
</table>

Total Semester Hrs: 133.5

- The INTEGRATIVE DESIGN STUDIO IA and INTEGRATIVE DESIGN STUDIO IB course sequence satisfies parallel Humanities & Social Science (H&SS) plus EDNS151 requirements needed for other engineering degrees at Mines. Students may satisfy these requirements by separately taking HASS100 and EDNS151.

- A minimum of 10.5 credits of Core Distributed Science courses are required. Students must take PHGN200 (PHYSICS II – ELECTROMAGNETISM AND OPTICS) and two of the common distributed science courses: CBEN110, CHGN122 or CHGN125, CSCI101, GEGN101, and MATH201. One of CSCI101 (INTRODUCTION TO COMPUTER SCIENCE) or MATH201 (PROBABILITY AND STATISTICS FOR ENGINEERS) must be taken from this list, and both can be taken depending on student preference. Note that PHGN200 is 4.5 credit hours, the math and computer science courses are each 3.0 credit hours, and the remaining courses are each 4.0 credit hours.
Students have limited flexibility as to when to take two of their Core Distributed Science courses starting in their freshman year into early junior year, and should be decided in consultation with student’s advisor to accommodate prerequisite requirements. The EDNS291 INTEGRATIVE DESIGN STUDIO IIA and EDNS292 INTEGRATIVE DESIGN STUDIO IIB course sequence substitutes for HASS200 GLOBAL STUDIES and any one of the EDNS2XX DESIGN II courses or MEGN200 for this degree only. MEGN200 does not substitute for EDNS2XX DESIGN II credit in any other degree program at this time. Additionally, the INTEGRATIVE DESIGN STUDIO II sequence does not count toward MEGN200 credit for students transferring out of the BSE program into Mechanical Engineering at this time.

ENGINEERING FUNDAMENTALS courses are: (1) one of the thermodynamics courses CHGN209, CBEN210, or MEGN361; (2) statics CEEN241; (3) one of the circuits courses EENG281 or EENG282; (4) one of the materials courses MTGN202, CEEN311, or MEGN312; and (5) one of the fluid mechanics courses PEGN251, CBEN307, CEEN310, GEGN351, or MEGN351. Prerequisites may apply.

Humanities & Social Science (H&SS) Restricted Elective courses, a minimum of 9 credit hours of upper level coursework, as described in the Humanities, Arts, and Social Sciences section of the catalog. Focus Areas may list recommended courses to use for these electives.

ENGINEERING ELECTIVES are purposefully drawn from course offerings provided through other engineering programs. Details are provided in the following section. Some of the Focus Areas identify specific courses from the list of allowed engineering electives that must be taken to satisfy the requirements of the Focus Area. Those engineering elective courses are identified in the Focus Area description as being outside of the 18 credit hours allocated to Focus Area Coursework.

Focus Area courses are a coherent set of required and suggested elective offerings around a particular topic. Details are given the Focus Area Requirements section below.

Bachelor of Science in Engineering: Engineering Coursework Requirements:
A minimum of 30 credit hours of Engineering Coursework (designated as ENGR in the Bachelor of Science in Engineering Degree Requirements listing above) are required (typically ten courses). 15 credit hours (typically five courses) are prescribed ENGINEERING FUNDAMENTALS courses as noted in footnote # above. The additional 15 credit hours are ENGINEERING ELECTIVES. The requirement of 30 credits of Engineering Coursework may include engineering courses taken as a part of a student’s Focus Areas (Focus Areas may require specific engineering courses be taken – see footnote ### above). This Engineering Coursework requirement combined with specific engineering content in the six INTEGRATIVE DESIGN STUDIOS (allocating 11 credit hours of the 18 credit hours for the design studios) and the Capstone Senior Design sequence (EDNS491 and EDNS492) produces 47 credit hours of engineering course work for this degree program. Note that certain ENGINEERING FUNDAMENTALS may also be prescribed by a Focus Area in order to satisfy prerequisite requirements. Likewise, students are encouraged to select ENGINEERING ELECTIVES to reinforce and complement the courses in the student’s chosen Focus Area. ENGINEERING ELECTIVES must be chosen from the list below, or select 400-level courses discussed with and approved by the student’s advisor. Finally, note that students must have at least 9 credit hours at or above the 300-level with a common theme or subject area within the group of courses that make up the required 30 credit hours of Engineering Coursework to ensure a reasonable level of disciplinary depth in a single field of engineering. Furthermore, students must have at least 9 credit hours at or above the 400-level plus the 6 credit hours of capstone senior design course and project work (EDNS491 and EDNS492).

The complexity of integrating various department curriculum, the potential for missing prerequisites, and the need to follow an expected course sequence requires that students develop a 2nd, 3rd and 4th year plan with their advisor during the first semester of their sophomore year course of study, and to collaboratively work with their advisor and Program Director for curricular assessment and approval prior to registration for every semester. The course plan is expected to be a dynamic roadmap for a student’s particular degree curriculum.

The following engineering-content courses are used to satisfy the 15-credit hour requirement for ENGINEERING ELECTIVES. Please be aware of course prerequisites, reviewed with the student’s advisor.

Chemical Engineering
- CBEN201 MATERIAL AND ENERGY BALANCES 3.0
- CBEN308 HEAT TRANSFER 3.0
- CBEN357 CHEMICAL ENGINEERING THERMODYNAMICS 3.0
- CBEN375 CHEMICAL ENGINEERING SEPARATIONS 3.0

Civil & Environmental Engineering
- CEEN301 FUNDAMENTALS OF ENVIRONMENTAL ENGINEERING: WATER 3.0
- CEEN312 SOIL MECHANICS 3.0
- CEEN312L SOIL MECHANICS LABORATORY 1.0
- CEEN314 STRUCTURAL THEORY 3.0
- CEEN360 INTRODUCTION TO CONSTRUCTION ENGINEERING 3.0
- CEEN381 HYDROLOGY AND WATER RESOURCES ENGINEERING 3.0

Electrical Engineering & Electronics
- PHGN215 ANALOG ELECTRONICS 4.0
- EENG284 DIGITAL LOGIC 4.0
- EENG307 INTRODUCTION TO FEEDBACK CONTROL SYSTEMS 3.0
- PHGN317 SEMICONDUCTOR CIRCUITS - DIGITAL 3.0
- EENG383 MICROCOMPUTER ARCHITECTURE AND INTERFACING 4.0
- EENG385 ELECTRONIC DEVICES AND CIRCUITS 4.0
- EENG386 FUNDAMENTALS OF ENGINEERING ELECTROMAGNETICS 3.0

Geological Engineering
- GEGN203 ENGINEERING TERRAIN ANALYSIS 2.0
- GEGN204 GEOLOGIC PRINCIPLES AND PROCESSES 2.0
- GEGN206 EARTH MATERIALS 3.0
- GEGN307 PETROLOGY 3.0
- GEGN342 ENGINEERING GEOMORPHOLOGY 3.0

Geology
- GEOL308 INTRODUCTORY APPLIED STRUCTURAL GEOLOGY 3.0
- GEOL310 EARTH MATERIALS 3.0
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL311</td>
<td>MINING GEOLOGY</td>
<td>3.0</td>
</tr>
<tr>
<td>GEOL315</td>
<td>SEDIMENTOLOGY AND STRATIGRAPHY</td>
<td>3.0</td>
</tr>
<tr>
<td>GEOL321</td>
<td>MINERALOGY AND MINERAL CHARACTERIZATION</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN315</td>
<td>DYNAMICS</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN416</td>
<td>ENGINEERING VIBRATION</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN451</td>
<td>FLUID MECHANICS II - AERODYNAMICS</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN461</td>
<td>THERMODYNAMICS II</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN471</td>
<td>HEAT TRANSFER</td>
<td>3.0</td>
</tr>
<tr>
<td>MNGN210</td>
<td>INTRODUCTORY MINING</td>
<td>3.0</td>
</tr>
<tr>
<td>MNGN316</td>
<td>COAL MINING METHODS</td>
<td>3.0</td>
</tr>
<tr>
<td>MNGN317</td>
<td>DYNAMICS FOR MINING ENGINEERS</td>
<td>1.0</td>
</tr>
<tr>
<td>MNGN321</td>
<td>INTRODUCTION TO ROCK MECHANICS</td>
<td>3.0</td>
</tr>
<tr>
<td>MTGN311</td>
<td>STRUCTURE OF MATERIALS</td>
<td>3.0</td>
</tr>
<tr>
<td>MTGN311L</td>
<td>STRUCTURE OF MATERIALS LABORATORY</td>
<td>1.0</td>
</tr>
<tr>
<td>MTGN334</td>
<td>CHEMICAL PROCESSING OF MATERIALS</td>
<td>3.0</td>
</tr>
<tr>
<td>MTGN348</td>
<td>MICROSTRUCTURAL DEVELOPMENT</td>
<td>3.0</td>
</tr>
<tr>
<td>MTGN351</td>
<td>METALLURGICAL AND MATERIALS THERMODYNAMICS</td>
<td>3.0</td>
</tr>
<tr>
<td>MTGN352</td>
<td>METALLURGICAL AND MATERIALS KINETICS</td>
<td>3.0</td>
</tr>
<tr>
<td>MTGN381</td>
<td>INTRODUCTION TO PHASE EQUILIBRIA IN MATERIALS SYSTEMS</td>
<td>2.0</td>
</tr>
<tr>
<td>PEGN305</td>
<td>COMPUTATIONAL METHODS IN PETROLEUM ENGINEERING</td>
<td>2.0</td>
</tr>
<tr>
<td>PEGN308</td>
<td>RESERVOIR ROCK PROPERTIES</td>
<td>3.0</td>
</tr>
<tr>
<td>PEGN312</td>
<td>PROPERTIES OF PETROLEUM ENGINEERING FLUIDS</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Bachelor of Science in Engineering: Focus Areas

Focus Areas are a compilation of prescribed and suggested courses and topical projects that have been reviewed by a broad spectrum of faculty from multiple programs/departments and of varied professional background who assess the collection of content to encompass technical, innovation, design, social/cultural, and environmental pillars needed by students who plan to pursue a career in that focus area.

All Focus Areas require a minimum of 18 credit hours of course work which may include prescribed or recommended engineering courses. In addition to the directed Focus Area coursework, certain HASS and engineering electives may be suggested as supporting the Focus Area. Students should work closely with their advisor to select their electives in a way that complements their Focus Area studies.

In addition to coursework specific to their Focus Area, students must also complete a 6-credit hour, two-semester capstone senior design project. This project is the culmination of the student’s studies and brings together content learned through the three previous years of Integrative Design Studios, science, mathematics, engineering coursework, and Focus Area coursework.

A limited number of Focus Areas are currently defined. New Focus Areas will be added periodically, depending on student and faculty interest, as described in a separate BSE Program Management document.

Current Focus Areas:

- **Energy Studies** (global energy development, sustainable energy, energy policy)
- **Robotics and Automation**
- **Water Security** (water quality, storage and management, efficient utilization, policy, law)
- **Music, Audio Engineering, and Recording Arts**
- **Corporate Sustainability**
- **Community Development**
- **STEM Teaching**
- **Individualized** (customized course of study)

Focus Area Requirements:

Focus Area – Energy Studies:

Students must take the following courses:

- **ENGY200** INTRODUCTION TO ENERGY 3.0
- **ENGY340** NUCLEAR ENERGY 3.0
- **ENGY350** GEOTHERMAL ENERGY 3.0
- **PHGN419** PRINCIPLES OF SOLAR ENERGY SYSTEMS 3.0
- **PEGN450** ENERGY ENGINEERING 3.0

PEGN450 is also listed in the ENGINEERING ELECTIVE list of courses. Students may not count PEGN450 as an ENGINEERING ELECTIVE credit.

Students must also select one of the following courses:

- **EBGN330** ENERGY ECONOMICS 3.0
- **HASS486** SCIENCE AND TECHNOLOGY POLICY 3.0
- **HASS490** ENERGY AND SOCIETY 3.0

HASS486 and HASS490, if used for Focus Area credits, may not also count toward the 9 credit hours of required Humanities & Social Science (H&SS) Restricted Electives.

Focus Area – Robotics and Automation:

Students must take the following courses:

- **MEGN315** DYNAMICS 3.0
- **EENG307** INTRODUCTION TO FEEDBACK CONTROL SYSTEMS 3.0
- **EENG383** MICROCOMPUTER ARCHITECTURE AND INTERFACING 4.0
- **MEGN441** INTRODUCTION TO ROBOTICS 3.0

MEGN315, EENG307, and EENG383 are also listed in the ENGINEERING ELECTIVE list of courses. Students may not count these three courses as ENGINEERING ELECTIVE credits.

Students must also select two of the following courses:

- **CSCI404** ARTIFICIAL INTELLIGENCE 3.0
- **CSCI473** HUMAN-CENTERED ROBOTICS 3.0
MEGN481 MACHINE DESIGN 3.0
CSCI507 INTRODUCTION TO COMPUTER VISION 3.0

Focus Area – Water Security:
(Nota note - this Focus Area requires 20 credits of topical coursework.) For their ENGINEERING FUNDAMENTALS courses in fluids and materials students must select GEGN351 and CEEN311.

Students must take the following courses:
GEGN203 ENGINEERING TERRAIN ANALYSIS 2.0
CEEN301 FUNDAMENTALS OF ENVIRONMENTAL ENGINEERING WATER 3.0
CEEN381 HYDROLOGY AND WATER RESOURCES ENGINEERING 3.0
CHGN403 INTRODUCTION TO ENVIRONMENTAL CHEMISTRY 3.0

* GEGN203, CEEN301, and CEEN381 are also listed in the ENGINEERING ELECTIVE list of courses. Students may not also count these three courses as ENGINEERING ELECTIVE courses.

Students must also select one of the following courses (both are recommended):
CEEN470 WATER AND WASTEWATER TREATMENT PROCESSES 3.0
CEEN480 CHEMICAL FATE AND TRANSPORT IN THE ENVIRONMENT 3.0

Students must also select two of the following courses:
EBGN310 ENVIRONMENTAL AND RESOURCE ECONOMICS 3.0
HASS486 SCIENCE AND TECHNOLOGY POLICY 3.0
HASS488 GLOBAL WATER POLITICS AND POLICY 3.0

** HASS486 and HASS488, if used for Focus Area credits, may not also count toward the 9 credit hours of Humanities & Social Science (H&SS) Restricted Electives.

Focus Area – Music, Audio Engineering, and Recording Arts:
Students must take the following courses**:
HASS324 AUDIO/ACOUSTICAL ENGINEERING AND SCIENCE 3.0
HASS326 MUSIC THEORY 3.0
HASS327 MUSIC TECHNOLOGY 3.0
HASS429 REAL WORLD RECORDING/RESEARCH 3.0

** HASS324, HASS326, HASS327, and HASS429 may not also count toward the required 9 credit hours of Humanities & Social Science (H&SS) Restricted Electives.

Students must also select 2 of the following courses:
MEGN315 DYNAMICS 3.0
EENG385 ELECTRONIC DEVICES AND CIRCUITS 4.0
MEGN416 ENGINEERING VIBRATION 3.0

* MEGN315, EENG385, and MEGN416, if used for Focus Area credits, may not also be used for ENGINEERING ELECTIVE credits.

It is also suggested that students participate in Performance Enhancement (3 credit hours total taken as Free Elective):
LIMU ENSEMBLE 3.0
LIMU189 INDIVIDUAL INSTRUMENTAL OR VOCAL MUSIC INSTRUCTION 1.0

Focus Area – Community Development:
Students must take the following courses:
EDNS315 ENGINEERING FOR SOCIAL AND ENVIRONMENTAL RESPONSIBILITY 3.0
EDNS477 ENGINEERING AND SUSTAINABLE COMMUNITY DEVELOPMENT 3.0
EDNS478 ENGINEERING AND SOCIAL JUSTICE 3.0
EDNS479 COMMUNITY-BASED RESEARCH 3.0

* EDNS477 EDNS478, and EDNS479 may not also count toward the 9 credit hours of Humanities & Social Science (H&SS) Restricted Electives.

Students must also select one of the following cross-cultural skills courses:
HASS425 INTERCULTURAL COMMUNICATION 3.0
EDNS475 ENGINEERING CULTURES IN THE DEVELOPING WORLD 3.0

** HASS425 and EDNS475, if used for Focus Area credits, may not also count toward the 9 credit hours of Humanities & Social Science (H&SS) Restricted Electives.

Students must also select one of the following courses:
CEEN472 ONSITE WATER RECLAMATION AND REUSE 3.0
CEEN475 SITE REMEDIATION ENGINEERING 3.0

Focus Area – Corporate Sustainability:
Students must take the following courses:
EDNS315 ENGINEERING FOR SOCIAL AND ENVIRONMENTAL RESPONSIBILITY 3.0
ENGR Any course(s) from the Engineering Coursework Requirements list 3.0
EDNS430 CORPORATE SOCIAL RESPONSIBILITY 3.0
HASS448 GLOBAL ENVIRONMENTAL ISSUES 3.0
EDNS479 COMMUNITY-BASED RESEARCH 3.0
EDNS480 ANTHROPOLOGY OF DEVELOPMENT 3.0

* ENGR must be a course other than any used for the 30 credit hours of ENGINEERING FUNDAMENTALS or ENGINEERING ELECTIVES.

** EDNS430, HASS448, EDNS479, and EDNS480 may not also count toward the 9 credit hours of Humanities & Social Science (H&SS) Restricted Electives.

Focus Area - STEM Teaching:
students who follow an IFA will be denoted as “Individualized Focus Area” and must meet the same standards as any of the predefined Focus Areas in the BSE Program, as described below in the Program Management section, including having at least three faculty mentors. The transcripts of students in majors outside of CECS)).

Students must also select one of the following courses:

- SCED333: EDUCATIONAL PSYCHOLOGY AND ASSESSMENT 3.0
- SCED363: DYNAMIC TEACHING: MOTIVATION, CLASSROOM MANAGEMENT, AND DIFFERENTIATION OF INSTRUCTION 3.0

* SCED 333 and SCED 363 may not double-count for both the Focus Area and the Humanities & Social Science (H&SS) Restricted Electives

Focus Area – Individualized Focus Areas:

An Individualized Focus Area (IFA) is a customized course of study along with an associated senior design capstone experience that is agreed upon by the student, advisor, and BSE Program Director. Typically, an IFA is defined for a student whose interests and passions are not represented by the existing predefined Focus Areas. The advisor and BSE Program Director are responsible for ensuring an IFA meets the same standards as any of the predefined Focus Areas in the BSE program, as described below in the Program Management section, including having at least three faculty mentors. The transcripts of students who follow an IFA will be denoted as “Individualized Focus Area” without further reference to the focus topic.

Major GPA

During the 2016-2017 Academic Year, the Undergraduate Council considered the policy concerning required major GPAs and which courses are included in each degree’s GPA. While the GPA policy has not been officially updated, in order to provide transparency, council members agreed that publishing the courses included in each degree’s GPA is beneficial to students.

The following list details the courses that are included in the GPA for this degree:

- EPIC100 through EPIC599
- EDNS100 through EDNS599

The Mines guidelines for Minor/ASI can be found in the Undergraduate Information section of the Mines Catalog.

Minor in Engineering for Community Development

Program requirements (18 credit hours)

Introductory Course (3 credits required):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDNS315</td>
<td>ENGINEERING FOR SOCIAL AND ENVIRONMENTAL RESPONSIBILITY</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Area 1 - Engineers and Development (6 credits from this list):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDNS477</td>
<td>ENGINEERING AND SUSTAINABLE COMMUNITY DEVELOPMENT</td>
<td>3.0</td>
</tr>
<tr>
<td>EDNS475</td>
<td>ENGINEERING CULTURES IN THE DEVELOPING WORLD</td>
<td>3.0</td>
</tr>
<tr>
<td>EDNS478</td>
<td>ENGINEERING AND SOCIAL JUSTICE</td>
<td>3.0</td>
</tr>
<tr>
<td>EDNS479</td>
<td>COMMUNITY-BASED RESEARCH</td>
<td>3.0</td>
</tr>
<tr>
<td>EDNS480</td>
<td>ANTHROPOLOGY OF DEVELOPMENT</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Area 2 - Community-Centered Design (6 credits from this list):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDNS301</td>
<td>HUMAN-CENTERED PROBLEM DEFINITION</td>
<td>3.0</td>
</tr>
<tr>
<td>EDNS401</td>
<td>PROJECTS FOR PEOPLE</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Or an EDNS2XX course with project directly related to community development

Capstone Design (3 credits from this list):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDNS492</td>
<td>SENIOR DESIGN II ((for students in majors in the College of Engineering and Computational Sciences, CECS, and with an identified HE component to the project) or)</td>
<td>3.0</td>
</tr>
<tr>
<td>CEEN477</td>
<td>SUSTAINABLE ENGINEERING DESIGN ((for students in majors outside of CECS))</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Minor in Leadership in Social Responsibility

The Minor in Leadership in Social Responsibility will prepare CSM students to become leaders in identifying and promoting the role that engineers can play in advancing social responsibility inside corporations. Graduates will be able to articulate the strategic value of social responsibility for business, particularly in achieving and maintaining the social license to operate, and the role engineering itself can play in advancing a firm’s social responsibility program, including community engagement.

For CSM students to “solve the world’s challenges related to the earth, energy and the environment,” they must also be able to navigate the increasingly complex social, political, and economic contexts that shape those challenges. Achieving the social license to operate, for example, is recognized as necessary for developing mineral resources in the US and abroad. Stewardship of the earth, development of materials, overcoming the earth’s energy challenges, and fostering environmentally sound and sustainable solutions – the bedrock of the Mines vision articulated in the Strategic Plan – requires engineers and applied scientists who are able...
to work in local and global contexts that are shaped by the sometimes conflicting demands of stakeholders, governments, communities and corporations. Reasoning through and managing these competing demands is at the core of social responsibility.

Minor in Leadership in Social Responsibility (18 credits required)

Three required courses (9 credits):

- EDNS315 Engineering for Social and Environmental Responsibility 3.0
- EDNS430 Corporate Social Responsibility 3.0
- EDNS479 Community-Based Research 3.0

One cross-cultural competency course (3 credits):

- EDNS475 Engineering Cultures in the Developing World 3.0
- HASS325 Cultural Anthropology 3.0
- HASS425 Intercultural Communication 3.0
- EDNS480 Anthropology of Development 3.0

Two electives, at least one of which must be an engineering course (related to Leadership and/or Corporate Social Responsibility topics, approved by program director) (6 credits):

1. Approved Petroleum Engineering course, such as
 - PEGN350 Sustainable Energy Systems 3.0
 - PEGN430 Environmental Law and Sustainability 3.0
 - PEGN481 Petroleum Seminar 2.0

2. Approved Mining Engineering course, such as
 - MNGN308 Mine Safety 1.0
 - MNGN427 Mine Valuation 2.0
 - MNGN470 Safety and Health Management in the Mining Industry 3.0
 - MNGN510 Fundamentals of Mining and Mineral Resource Development 3.0

3. Approved Environmental Engineering course, such as
 - CEEEN472 Onsite Water Reclamation and Reuse 3.0
 - CEEEN475 Site Remediation Engineering 3.0
 - CEEEN477 Sustainable Engineering Design 3.0

4. Approved Economics & Business course, such as
 - EBGN340 Energy and Environmental Policy 3.0
 - EBGN443 Public Economics 3.0
 - EBGN567 Business Law and Ethics 3.0

5. Approved Humanities & Social Science (H&SS) courses are to be determined. Additional courses can be approved by the Program Director.

Area of Special Interest in Humanitarian Engineering (12 credit hours)

Intro Course 3.0

- EDNS315 Engineering for Social and Environmental Responsibility 3.0

Courses

EDNS151. DESIGN I. 3.0 Semester Hrs.
Equivalent with EPIC151,
(1, II, S) Design I teaches students how to solve open-ended problems in a hands-on manner using critical thinking and workplace skills. Students work in multidisciplinary teams to learn through doing, with emphasis on defining and diagnosing the problem through a holistic lens of technology, people and culture. Students follow a user-centered design methodology throughout the process, seeking to understand a problem from multiple perspectives before attempting to solve it. Students learn and apply specific skills throughout the semester, including: communication (written, oral, graphical), project management, concept visualization, critical thinking, effective teamwork, as well as building and iterating solutions. 2 hours lecture, 3 hours lab; 3 semester hours.

EDNS155. DESIGN I: GRAPHICS. 1.0 Semester Hr.
Equivalent with EPIC155,
(1, II, S) Design I: Graphics teaches students conceptualization and visualization skills, and how to represent ideas graphically, both by hand and using computer aided design (CAD). 1 hour lecture, 1 hour lab; 1 semester hour.

EDNS156. AUTOCAD BASICS. 1.0 Semester Hr.
(1, II) This course explores the two- and three-dimensional viewing and construction capabilities of AutoCAD. Students will learn to use AutoCAD for modeling (2D line drawing, 3D construction, Rendering, Part Assembly) and will develop techniques to improve speed and accuracy. The AutoCAD certification exam will not be offered as part of this course; however, the professor will provide instructions on accessing certification options, which generally have their own fees associated with them. 3 hours lab; 1 semester hour.

EDNS157. SOLIDWORKS BASICS (FOR CERTIFICATION). 1.0 Semester Hr.
(1, II) Students will become familiar and confident with Solidworks CAD program and be able to use most of the basic functions well, including Parts, Assemblies, and Drawing Layouts. The Associate-level certification exam will be offered at the end of the course, and while there are no guarantees for students becoming certified, students will have gained the necessary skills to try. 3 hours lab; 1 semester hour.
EDNS191. INTEGRATIVE DESIGN STUDIO IA. 4.0 Semester Hrs.
(I) (WI) Introduces students to human-centered design methodologies relative to open-ended problem solving using socially relevant challenges. Students in this first design studio course utilize a range of resources to explore ethical implications and test the logic of arguments for/against proposed design solutions. Hands-on activities and graphical visualization are utilized to approach the design process in a collaborative team environment. Students begin compiling a personal design portfolio that carries through their undergraduate studies for the Bachelor of Science in Engineering degree. 3 hours lecture; 3 hours lab; 4 semester hours.

EDNS192. INTEGRATIVE DESIGN STUDIO IB. 3.0 Semester Hrs.
(II) (WI) Students explore and participate in design activities as a member of a multi-year, multi-discipline client project, or work on an individual or smaller team project such as the design of experiential activities or community projects. Students are challenged to evaluate the history of science and engineering and its impact on social and political systems as a foundation for creating smarter designs. Prototyping skills are utilized to explore design functionality and potential alternatives. The course continues an emphasis on technical writing along with developing other communication formats. Prerequisite: EDNS191. 2 hours lecture; 3 hours lab; 3 semester hours.

EDNS198. SPECIAL TOPCS. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

EDNS199. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: Independent Study form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

EDNS199. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: Independent Study form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

EDNS200. COMMUNICATION. 3.0 Semester Hrs.
(I, II) (WI) This course introduces future engineers to why communication matters in engineering and involves collaborative effort to convey technical details in socially embedded and socially transformative contexts. The course approach provides exposure to how engineers communicate a range and depth of sociotechnical content to varied audiences, in writing, orally, visually, electronically, and via contextual listening, and shows students ways in which communication functions via diverse genres, to multiple audiences, and for different purposes. With structured opportunity for feedback and revision, students both study and produce communication artifacts that aim to meet or exceed criteria for what constitutes legitimate evidence and context within and beyond diverse engineering fields. 3 hours lecture; 3 semester hours.

EDNS205. PROGRAMMING CONCEPTS AND ENGINEERING ANALYSIS. 3.0 Semester Hrs.
(I,I,I) This course provides an introduction to techniques of scientific computation that are utilized for engineering analysis, with the software package MATLAB as the primary computational platform. The course focuses on methods data analysis and programming, along with numerical solutions to algebraic and differential equations. Engineering applications are used as examples throughout the course. 3 hours lecture; 3 semester hours.

EDNS251. DESIGN II. 3.0 Semester Hrs.
Equivalent with EPIC251.
(I, II, S) Design II builds on the design process introduced in Design I, which focuses on open-ended problem solving in which students integrate teamwork and communications with the use of computer software as tools to solve engineering problems. Computer applications emphasize information acquisition and processing based on knowing what new information is necessary to solve a problem and where to find the information efficiently. Teams analyze team dynamics through weekly team meetings and progress reports. The course emphasizes oral presentations and builds on written communications techniques introduced in Design I. 2 hours lecture, 3 hours lab; 3 semester hours. Prerequisite: EDNS151, EDNS155, EDNS192, or HNRS115.

EDNS261. DESIGN II: GIS. 3.0 Semester Hrs.
Equivalent with EPIC261.
(I,II,S) The Design II: GIS builds on the design process learned in Design I, which focuses on open-ended problem solving where students integrate teamwork and communication with the use of computer software as tools to solve engineering problems. Design II: GIS incorporates instruction and hands-on exercises in ArcGIS, a geographic information system software package, to enable students to capture, manage, analyze and display spatial data in maps and charts, to solve problems that depend on spatial analysis and orientation GIS for their design solutions. 2 hours lecture, 3 hours lab; 3 semester hours. Prerequisite: EDNS151, EDNS155, EDNS192, or HNRS115.

EDNS262. DESIGN II: AUTOCAD. 3.0 Semester Hrs.
Equivalent with EPIC262.
(I) Design II: AutoCAD builds on the design process from Design I, which focuses on open-ended problem solving where students integrate teamwork and communication with the use of computer software as tools to solve engineering problems. Design II: AutoCAD incorporates instruction in 3-D AutoCAD computer-aided drawing of elemental designs (structure and mechanical) and geo-spatial designs and analyses to solve problems and publish outcomes. Students are introduced to digital terrain modeling and geo-referencing concepts using AutoCAD Civil3D and raster satellite imagery. Students studying Civil Engineering, Environmental Engineering, and Mining Engineering might consider registering for this course. 2 hours lecture, 3 hours lab; 3 semester hours. Prerequisite: EDNS151, EDNS155, EDNS192, or HNRS115.
EDNS263. DESIGN II: MATERIALS. 3.0 Semester Hrs.
Equivalent with EPIC271,
(I, II) Design II: Materials builds on the design process introduced in Design I, which focuses on open-ended problem solving in which students integrate teamwork and communication with the use of computer software as tools to solve engineering problems. The Design II: Materials curriculum matches the standard Design II deliverables but with a focus on Metallurgical and Materials Engineering (MME) based projects. Previous projects have utilized areas such as mechanical testing, bio-materials, semiconductors, ceramics, and non-destructive examination to address industrial, environmental, research and geopolitical open-ended problems. 2 hours lecture, 3 hours lab; 3 semester hours. Prerequisite: EDNS151, EDNS155, EDNS192, or HNRS115.

EDNS264. DESIGN II: GEOLOGY GIS. 3.0 Semester Hrs.
Equivalent with EPIC264,
(WI) Design II: GIS builds on the design process introduced in Design I, which focuses on open-ended problem solving in which students integrate teamwork and communication with the use of computer software as tools to solve engineering problems. Computer applications emphasize information acquisition and processing based on knowing what new information is necessary to solve a problem and where to find the information efficiently. There are typically eight geology-based projects in the course, based on the needs of multiple outside clients. Many of the course deliverables are maps with associated data sets. Check with department for semester(s) offered. Prerequisite: EDNS151, EDNS155, EDNS192 or HNRS115.

EDNS269. DESIGN II: ENGINEERING PHYSICS. 3.0 Semester Hrs.
Equivalent with EPIC269,
(I, II, S) Design II: Engineering Physics builds on the design process introduced in Design I, and focuses on open-ended problem solving in which students use teamwork to develop computer software as a tool to solve problems related to engineering physics. Students will learn basic programming skills and apply them to projects that relate to current research and applications of physics. Projects are selected to represent real world physics problems wherein creative and critical thinking skills are necessary. These projects often involve computer-based optimization to obtain a solution. Students will learn how to analyze errors in data, and their effects on data interpretation and decision-making. Engineering Physics majors are encouraged to take this course in the sophomore year. It is open to other students on a space-available basis. 2 hours lecture, 3 hours lab; 3 semester hours. Prerequisite: EDNS151, EDNS155, EDNS192, or HNRS115.

EDNS291. INTEGRATIVE DESIGN STUDIO IIA. 3.0 Semester Hrs.
(I) Students work on an entrepreneurial or client project that may be a short-duration project or continuation of a multi-year, multi-discipline project with teams consisting of freshman to possibly senior students working on the same project, and typically student-lead designs. The course focuses on technical open-ended problem solving in which students integrate teamwork and communications with the use of computer software tools and inclusion of the greater social, political, cultural, and economic factors that ultimately determine if a design is successful. Case studies or other illustrative approaches are used to facilitate discussions on what constitutes effective or harmful designs in areas of earth, energy and environment. Information gathering and modeling are used to support problem assessment and solution exploration. Prerequisites: EDNS192 or HNRS115 or CSM192 or HASS100 and EDNS151. 3 hours lecture; 3 semester hours.

EDNS292. INTEGRATIVE DESIGN STUDIO IIB. 3.0 Semester Hrs.
(II) Students focus on significant contribution to a design project, building proficiency as they incorporate their core and distributed science studies, and begin to integrate their studies in distributed engineering as may be appropriate to the project. Communication of the design approach is emphasized. Prerequisite: EDNS291. 3 hours lecture; 3 semester hours.

EDNS298. SPECIAL TOPICS. 1-6 Semester Hrs.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

EDNS299. INDEPENDENT STUDY. 1-6 Semester Hrs.
(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Variable credit; 1 to 6 credit hours. Repeatable for credit. Prerequisite: Independent Study form must be completed and submitted to the Registrar.

EDNS301. HUMAN-CENTERED PROBLEM DEFINITION. 3.0 Semester Hrs.
(I, II) This class will equip students with the knowledge, skills and attitudes needed to identify, define, and begin solving real problems for real people, within the socio-technical ambiguity that surrounds all engineering problems. The course will focus on problems faced in everyday life, by people from different backgrounds and in different circumstances, so that students will be able to rise to the occasion presented by future workplace challenges. By the end of this course, students will be able to recognize design problems around them, determine whether they are worth solving, and employ a suite of tools to create multiple solutions. The follow up course --"Design for People" -- will enable students to take the best solutions to the prototype phase. 3 hours lecture; 3 semester hours.

EDNS315. ENGINEERING FOR SOCIAL AND ENVIRONMENTAL RESPONSIBILITY. 3.0 Semester Hrs.
(I, II) (WI) This course explores how engineers think about and practice environmental and social responsibility, and critically analyzes codes of ethics before moving to a deeper focus on macroethical topics with direct relevance to engineering practice, environmental sustainability, social and environmental justice, social entrepreneurship, corporate social responsibility, and engagement with the public. These macroethical issues are examined through a variety of historical and contemporary case studies and a broad range of technologies. Prerequisite: HASS100, and EDNS151 or EDNS192. 3 hours lecture; 3 semester hours.

EDNS375. ENGINEERING CULTURES. 3.0 Semester Hrs.
Equivalent with LAIS375,
(I, II) (WI) This course seeks to improve students' abilities to understand and assess engineering problem solving from different cultural, political, and historical perspectives. An exploration, by comparison and contrast, of engineering cultures in such settings as 20th century United States, Japan, former Soviet Union and present day Russia, Europe, Southeast Asia, and Latin America. Prerequisite: HASS100. Corequisite: HASS200. 3 hours lecture; 3 semester hours.
EDNS391. INTEGRATIVE DESIGN STUDIO IIIA. 3.0 Semester Hrs.
(I, WI) Design Practicum augments the engineering core and addresses content and depth that students may not have otherwise acquired through separate Engineering Core courses. This design studio is intended as preparation for the Design Practicum/Field Session studio and includes modules on technical engineering drawings, system simulation and optimization. Project management skills are emphasized. Prerequisites: EDNS292 or LAIS 200 and any EPIC 200
Level or MEGN200 or GPGN268, and EDNS200. 3 hours lecture; 3
semester hours.

EDNS392. INTEGRATIVE DESIGN STUDIO IIIB. 3.0 Semester Hrs.
(II, WI) Students in Design Practicum incorporate instruction from
their Engineering Core to drive technical feasibility assessment of a
project for a client. This studio serves as the Field Session experience
for students in the BSE program and places students in a professional
practice experiential environment. Teaming and leadership skills are
emphasized. This course also places strong emphasis on the economic
and business aspects of a project, including development of a detailed
techno-economic assessment. Prerequisites: EDNS391, PHGN200, and
MATH225. 3 hours lecture; 3 semester hours.

EDNS398. SPECIAL TOPICS. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special
interests of instructor(s) and student(s). Usually the course is offered only
one. Variable credit; 1 to 6 credit hours. Repeatable for credit under
different titles.

EDNS399. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) Individual research or special problem projects supervised by a
faculty member, also, when a student and instructor agree on a subject
matter, content, and credit hours. Prerequisite: ?Independent Study?
form must be completed and submitted to the Registrar. Variable credit; 1
to 6 credit hours. Repeatable for credit.

EDNS401. PROJECTS FOR PEOPLE. 3.0 Semester Hrs.
(I, II) Work with innovative organizations dedicated to community
development to solve major engineering challenges. This course is
open to juniors and seniors interested in engaging a challenging design
problem and learning more about Human Centered Design (HCD). The
course will be aimed at developing engineering solutions to real problems
affecting real people in areas central to their lives. 3 hours lecture; 3
semester hours.

EDNS430. CORPORATE SOCIAL RESPONSIBILITY. 3.0 Semester
Hrs.
Equivalent with LAIS430,
Businesses are largely responsible for creating the wealth upon which the
well-being of society depends. As they create that wealth, their actions
impact society, which is composed of a wide variety of stakeholders. In
turn, society shapes the rules and expectations by which businesses
must navigate their internal and external environments. This interaction
between corporations and society (in its broadest sense) is the concern
of Corporate Social Responsibility (CSR). This course explores the
dimensions of that interaction from a multi-stakeholder perspective using
case studies, guest speakers and field work. Prerequisite: HASS100.
Corequisite: HASS200. 3 hours lecture; 3 semester hours.

EDNS475. ENGINEERING CULTURES IN THE DEVELOPING WORLD.
3.0 Semester Hrs.
Equivalent with LAIS475,
An investigation and assessment of engineering problem-solving in the
developing world using historical and cultural cases. Countries to be
included range across Africa, Asia, and Latin America. Prerequisite:
HASS100. Corequisite: HASS200. 3 hours lecture; 3 semester hours.

EDNS477. ENGINEERING AND SUSTAINABLE COMMUNITY
DEVELOPMENT. 3.0 Semester Hrs.
(I, II) This course is an introduction to the relationship between
engineering and sustainable community development (SCD)
from historical, political, ideological, ethical, cultural, and practical
perspectives. Students will study and analyze different dimensions of
community and sustainable development and the role that engineering
might play in them. Also students will critically explore strengths and
limitations of dominant methods in engineering problem solving, design,
and research for working in SCD. Students will learn to research,
describe, analyze and evaluate case studies in SCD and develop criteria
for their evaluation. Prerequisite: HASS100. Corequisite: HASS200. 3
hours seminar; 3 semester hours.

EDNS478. ENGINEERING AND SOCIAL JUSTICE. 3.0 Semester Hrs.
Equivalent with LAIS478,
(II) This course offers students the opportunity to explore the
relationships between engineering and social justice. The course
begins with students? exploration of their own social locations, alliances
and resistances to social justice through critical engagement of
interdisciplinary readings that challenge engineering mindsets. Then the
course helps students to understand what constitutes social justice in
different areas of social life and the role that engineers and engineering
might play in these. Finally, the course gives students an understanding
of why and how engineering has been aligned and/or divergent from
social justice issues and causes. Prerequisite: HASS100. Corequisite:
HASS200. 3 hours lecture; 3 semester hours.

EDNS479. COMMUNITY-BASED RESEARCH. 3.0 Semester Hrs.
Engineers and applied scientists face challenges that are profoundly
socio-technical in nature, and communities are increasingly calling for
greater participation in the decisions that affect them. Understanding
the diverse perspectives of communities and being able to establish
positive working relationships with their members is therefore crucial to
the socially responsible practice of engineering and applied science. This
course provides students with the conceptual and methodological tools
to conduct community-based research. Students will learn ethnographic
field methods and participatory research strategies, and critically assess
the strengths and limitations of these through a final original research
project. Prerequisite: HASS100 or graduate student standing. Co-
require: HASS200 or graduate student standing.

EDNS480. ANTHROPOLOGY OF DEVELOPMENT. 3.0 Semester Hrs.
Equivalent with LAIS480,
Engineers and applied scientists face challenges that are profoundly
socio-technical in nature, ranging from controversies surrounding new
technologies of energy extraction that affect communities to the mercurial
“social license to operate” in locations where technical systems impact
people. Understanding the perspectives of communities and being
able to establish positive working relationships with their members is
therefore crucial to the socially responsible practice of engineering and
applied science. This course provides students with the conceptual and
methodological tools to engage communities in respectful and productive
ways. Students will learn ethnographic field methods and participatory
research strategies, and critically assess the strengths and limitations of
these through a final original research project. Prerequisite: HASS200.
Co-requisite: EDNS477 or HASS325.
EDNS491. SENIOR DESIGN I. 3.0 Semester Hrs.
Equivalent with EGGN491.
(I, II) (WI) This course is the first of a two-semester capstone course sequence giving the student experience in the engineering design process. Realistic open-ended design problems are addressed for real world clients at the conceptual, engineering analysis, and the synthesis stages and include economic and ethical considerations necessary to arrive at a final design. Students are assigned to interdisciplinary teams and exposed to processes in the areas of design methodology, project management, communications, and work place issues. Strong emphasis is placed on this being a process course versus a project course. This is a writing-across-the-curriculum course where students' written and oral communication skills are strengthened. The design projects are chosen to develop student creativity, use of design methodology and application of prior course work paralleled by individual study and research. 2 hours lecture; 3 hours lab; 3 semester hours. Prerequisite: For BSME students, completion of MEGN301; for BSCE students, completion of Engineering Field Session, Civil, CEEN 331; for BSENV completion of Engineering Field Session, Environmental, CEEN 330; and for all other students completion of Field Session appropriate to the student's specialty and consent of instructor. Co-requisite: For BSME students, MEGN481; for BSCE students, any one of CEEN443, CEEN445, CEEN440, or CEEN415; for BSEE students, EENG 350 and EENG 389 plus any one of EENG 391, EENG 392, EENG 393, or EENG 394; for BSE students, EDNS392.

EDNS492. SENIOR DESIGN II. 3.0 Semester Hrs.
(I, II) (WI) This course is the second of a two-semester sequence to give the student experience in the engineering design process. Design integrity and performance are to be demonstrated by building a prototype or model, or producing a complete drawing and specification package, and performing pre-planned experimental tests, wherever feasible, to verify design compliance with client requirements. Prerequisite: EGGN491. 1 hour lecture; 6 hours lab; 3 semester hours.

EDNS498. SPECIAL TOPICS. 6.0 Semester Hrs.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

EDNS499. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: Independent Study form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

Director
Dean Nieusma, Division Director

Professors
Kevin Moore, Executive Director of Humanitarian Engineering
Juan Lucena, Humanitarian Engineering Director of Undergraduate Programs and Outreach

Associate Professor
Jessica Smith, Humanitarian Engineering Director of Graduate Programs and Research

Assistant Professor
Elizabeth Reddy

Teaching Associate Professors
Yosef Allam, Director of Cornerstone Design@Mines
Robin Bullock
Alina Handorean
Leslie Light
Mirna Mattjik
Carrie McClelland
Chelsea Salinas, Assistant Division Director

Teaching Assistant Professor
Lauren Shumaker, Director of Thorson First-Year Honors Experience

Staff
Monica Kurtz, Stakeholder Relations Manager
Julia Roos, Associate Director of Humanitarian Engineering
Kimberly Walker, Program Assistant