Mining Engineering

Program Description

Mining engineering (https://mining.mines.edu/) is a broad profession, which embraces all required activities to facilitate the recovery of valuable minerals and products from the earth’s crust for the benefit of humanity. It is one of the oldest engineering professions, which continues to grow in importance. It has often been said: “If it can’t be grown then it must be mined.” An adequate supply of mineral products at competitive prices is the life-blood of the continuing growth of industrialized nations and the foundation of the progress for the developing countries.

The function of the mining engineer is to apply knowledge of pertinent scientific theory, engineering fundamentals, and improved technology to recover natural resources. Mining is a world-wide activity involving the extraction of non-metallics, metal ores of all kinds, and solid fuel and energy sources such as coal and nuclear materials. In addition to mineral extraction, the skills of mining engineers are also needed in a variety of fields where the earth’s crust is utilized, such as the underground construction industry. The construction industry, with its requirements of developing earth (rock) systems, tunnels and underground chambers, and the hazardous waste disposal industry are examples of such applications. These are expanding needs, with a shortage of competent people; the mining engineer is well qualified to meet these needs.

The importance of ecological and environmental planning is recognized and given significant attention in all aspects of the mining engineering curriculum.

Mines mining engineering students study the principles and techniques of mineral exploration, and underground and surface mining operations, as well as, mineral processing technologies. Studies include rock mechanics, rock fragmentation, plant and mine design, mine ventilation, surveying, valuation, industrial hygiene, mineral law, mine safety, computing, mineral processing, solution mining and operations research. Throughout the mining engineering curriculum, a constant effort is made to maintain a balance between theoretical principles and their engineering applications. The mining engineering graduate is qualified for positions in engineering, supervision, and research.

The Department (https://mining.mines.edu/) recognizes the high expectations that industry has for our graduates as well as the responsibility we have to prepare our students for successful professional careers. To be successful, it is imperative that mining graduates possess an ever-growing set of technical skills, knowledge, and expertise. Beyond the technical aspects of basic sciences, engineering fundamentals, and problem-solving, mining engineering graduates must also acquire a host of other skills which are essential in today’s global economy.

These include:

- The ability to work in interdisciplinary teams and communicate effectively to different types of audiences,
- An appreciation of the social, political, and economic realities of different cultures, countries, and indigenous peoples,
- An understanding of the global role mineral extraction and resource development have on local, regional, and international levels,
- The desire for continuing and life-long education, intellectual and professional development, analysis, and creativity,
- The need to maintain high professional and ethical standards,
- The importance of self-confidence, conviction, and compassion, and
- The skills critical to leadership and supervision.

Put simply, our vision for the Mining Engineering Department (https://mining.mines.edu/) is to be internationally recognized as the World’s premiere center for education and applied research in the diverse fields of mining and underground construction and tunneling. This vision spans across numerous interdisciplinary areas of study. Through collaborations with other Mines departments, academic institutions, government agencies, and industry, we are committed to expanding the international reputation of the Department for excellence in education, research, industry service, and community outreach.

The Mining Engineering Department (https://mining.mines.edu/)'s program objectives are:

1. Have knowledge of, and skills in, engineering fundamentals to solve complex and open-ended mining and earth systems-related problems.
2. Demonstrate teamwork and leadership skills relevant to their chosen profession.
3. Several years after leaving Mines, our graduates will achieve professional growth.

The program leading to the degree of Bachelor of Science in Mining Engineering (https://mining.mines.edu/undergraduate-program/) is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org (http://www.abet.org)/.

Program Educational Objectives (Bachelor of Science in Mining Engineering)

In addition to contributing toward achieving the educational objectives described in the CSM Graduate profile and the ABET Accreditation Criteria, the educational objectives which the Mining Engineering Department aspires to accomplish can be seen in the attributes of our graduates. The graduate is equipped with:

- A sound knowledge in the required basic sciences and engineering fundamentals;
- Knowledge and experience in the application of engineering principles to the exploitation of earth’s resources and construction of earth (rock) systems in an engineering systems orientation and setting;
- Ability to solve complex mining and earth systems related problems;
- Capability for team work and decision making;
- Appreciation of the global role of minerals in the changing world;
- Desire for continuing education, intellectual and professional development, analysis and creativity;
- Self confidence and articulation, with high professional and ethical standards.

Curriculum

The mining engineering curriculum is devised to facilitate the widest employability of CSM graduates. The curriculum is based on scientific engineering and geologic fundamentals and the application of these fundamentals to design and operate mines and to create structures in rock and prepare mine products for the market. To achieve this goal, the curriculum is designed to ensure that the graduates:
• become broad based mining engineers who can tackle the problems of both hard and soft rock mining, regardless of whether the mineral deposit requires surface or underground methods of extraction,
• have an opportunity, through elective courses, to specialize in one or more aspects of the mining engineering profession,
• are interested in an academic or research career, or wish to pursue employment in related fields, have a sufficiently sound scientific and engineering foundation to do so effectively.

This purpose permeates both the lower and upper division courses.

Another important aspect of the curriculum is the development of the students’ capabilities to be team members, with the added objective of preparing them for leadership in their professional life. The curriculum focuses on the application of engineering principles to solving problems, in short, engineering design in an earth systems approach.

Degree Requirements (Mining Engineering)

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Fall lec</th>
<th>Fall lab</th>
<th>Fall sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>HASS100</td>
<td>NATURE AND HUMAN VALUES</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH111</td>
<td>CALCULUS FOR SCIENTISTS AND ENGINEERS I</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHGN121</td>
<td>PRINCIPLES OF CHEMISTRY I</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDNS151</td>
<td>DESIGN I</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSM101</td>
<td>FRESHMAN SUCCESS SEMINAR</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAGN</td>
<td>PHYSICAL ACTIVITY COURSE</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Fall lec</th>
<th>Fall lab</th>
<th>Fall sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH213</td>
<td>CALCULUS FOR SCIENTISTS AND ENGINEERS III</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHGN200</td>
<td>PHYSICS II-ELECTROMAGNETISM AND OPTICS</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGN310</td>
<td>EARTH MATERIALS</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEEN241</td>
<td>STATICS</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAGN</td>
<td>PHYSICAL ACTIVITY COURSE</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Spring lec</th>
<th>Spring lab</th>
<th>Spring sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH225</td>
<td>DIFFERENTIAL EQUATIONS</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEEN311</td>
<td>MECHANICS OF MATERIALS</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Fall lec</th>
<th>Fall lab</th>
<th>Fall sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>HASS200</td>
<td>GLOBAL STUDIES</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Fall lec</th>
<th>Fall lab</th>
<th>Fall sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGN322</td>
<td>INTRODUCTION TO MINERAL PROCESSING AND LABORATORY</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summer

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>lec</th>
<th>lab</th>
<th>sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNGN300</td>
<td>SUMMER FIELD SESSION</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNGN308</td>
<td>MINE SAFETY</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>lec</th>
<th>lab</th>
<th>sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNGN312</td>
<td>SURFACE MINE DESIGN</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNGN321</td>
<td>INTRODUCTION TO ROCK MECHANICS</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HASS200</td>
<td>GLOBAL STUDIES</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FREE</td>
<td>Free Elective</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>lec</th>
<th>lab</th>
<th>sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>EENG281</td>
<td>INTRODUCTION TO ELECTRICAL CIRCUITS, ELECTRONICS AND POWER</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNGN314</td>
<td>UNDERGROUND MINE DESIGN</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEGN351/PEGN251</td>
<td>FLUID MECHANICS</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTIVE HUMANITIES & SOCIAL SCIENCE (H&SS) MID-LEVEL RESTRICTED ELECTIVE</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FREE</td>
<td>Free Elective</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>lec</th>
<th>lab</th>
<th>sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNGN414</td>
<td>MINE PLANT DESIGN</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNGN428</td>
<td>MINING ENGINEERING EVALUATION AND DESIGN REPORT I</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNGN438</td>
<td>GEOSTATISTICS</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTIVE HUMANITIES & SOCIAL SCIENCE (H&SS) MID-LEVEL RESTRICTED ELECTIVE</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FREE</td>
<td>Free Elective</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>lec</th>
<th>lab</th>
<th>sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNGN429</td>
<td>MINING ENGINEERING EVALUATION AND DESIGN REPORT II</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
in explosive engineering, students enrolled in this program will discover
With the proper program development of courses and basic knowledge
investigations, manufacturing and material synthesis.
and gas operations, demolition, homeland security, military, forensic
the mining and materials engineering, underground construction, oil
for new and developing applications involving the use of explosives in
with hands-on experience, this minor program will prepare students
Developed in the CSM tradition of combining academic education
that offers an explosive engineering minor program in the U.S.A.
There are very few academic explosive engineering programs world
wide. In fact, Colorado School of Mines is the only educational institution
that recently completed their freshman or sophomore years at CSM. Topics covered will include safety and explosives
research project under the supervision of a faculty advisor.
and select the proper course sequence and complete a hands-on
materials. With the help of the program advisor, the students will design
An explosives minor requires 18 credit hours of specially selected
courses. The list of available courses can be found in the mining
engineering department office.

Courses
MNGN198. SPECIAL TOPICS IN MINING ENGINEERING. 6.0
Semester Hrs.
(i, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.
MNGN199. INDEPENDENT STUDY. 1-6 Semester Hr.
(i, II) (WI) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: Independent Study? form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.
MNGN210. INTRODUCTORY MINING. 3.0 Semester Hrs.
INTRODUCTORY MINING (I, II) Survey of mining and mining economics. Topics include mining law, exploration and sampling, reserve estimation, project evaluation, basic unit operations including drilling, blasting, loading and hauling, support, shaft sinking and an introduction to surface and underground mining methods. Prerequisite: None. 3 hours lecture; 3 semester hours.
MNGN222. INTRODUCTION TO EXPLOSIVES ENGINEERING. 3.0
Semester Hrs.
(S) A basic introduction to explosives engineering and applied explosives science for students that recently completed their freshman or sophomore years at CSM. Topics covered will include safety and explosives regulations, chemistry of explosives, explosives physics, and detonation properties. The course features a significant hands-on practical laboratory learning component with several sessions held at the Explosives Research Laboratory (ERL) in Idaho Springs. Students completing this course will be well prepared for more advanced work in MNGN333 and MNGN444. Prerequisites: PHGN100, CHGN121, CHGN122, MATH111, and MATH112. 2 hours lecture; 3 hours lab; 3 semester hours.
MNGN298. SPECIAL TOPICS IN MINING ENGINEERING. 6.0
Semester Hrs.
(i, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.
MNGN299. INDEPENDENT STUDY. 1-6 Semester Hr.
(i, II) (WI) Individual research or special problem projects supervised by a faculty member. When a student and instructor agree on a subject matter, content, method of assessment, and credit hours, it must be approved by the Department Head. Prerequisite: "Independent Study" form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

Major GPA
During the 2016-2017 Academic Year, the Undergraduate Council considered the policy concerning required major GPAs and which courses are included in each degree’s GPA. While the GPA policy has not been officially updated, in order to provide transparency, council members agreed that publishing the courses included in each degree’s GPA is beneficial to students.
The following list details the courses that are included in the GPA for this degree:

- MNGN100 through MNGN599 inclusive

Minor Programs
The Mining Engineering Department offers three minor programs; the traditional mining engineering program for non-mining majors, underground construction and tunneling and explosive engineering.

Mining Engineering Minor
The minor program in mining engineering requires students to take:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNGN210</td>
<td>INTRODUCTORY MINING</td>
<td>3.0</td>
</tr>
<tr>
<td>MNGN312</td>
<td>SURFACE MINE DESIGN</td>
<td>1.0</td>
</tr>
<tr>
<td>MNGN314</td>
<td>UNDERGROUND MINE DESIGN</td>
<td>1.0</td>
</tr>
<tr>
<td>MNGN316</td>
<td>COAL MINING METHODS</td>
<td>1.0</td>
</tr>
<tr>
<td>Other courses from mining engineering</td>
<td></td>
<td>9.0</td>
</tr>
</tbody>
</table>

Total Semester Hrs: 18.0

The list of available courses can be found in the mining engineering department office.

Explosive Engineering Minor
Program Advisor: Dr. Mark Kuchta

There are very few academic explosive engineering programs worldwide. In fact, Colorado School of Mines is the only educational institution that offers an explosive engineering minor program in the U.S.A. Developed in the CSM tradition of combining academic education with hands-on experience, this minor program will prepare students for new and developing applications involving the use of explosives in the mining and materials engineering, underground construction, oil and gas operations, demolition, homeland security, military, forensic investigations, manufacturing and material synthesis.

With the proper program development of courses and basic knowledge in explosive engineering, students enrolled in this program will discover and gain insight into the exciting industrial applications of explosives, selection of explosives, and the correct and safe use of the energetic materials. With the help of the program advisor, the students will design and select the proper course sequence and complete a hands-on research project under the supervision of a faculty advisor.

An explosives minor requires 18 credit hours of specially selected courses. The list of available courses can be found in the mining engineering department office.
MNGN300. SUMMER FIELD SESSION. 3.0 Semester Hrs.
(S) Classroom and field instructions in the theory and practice of surface and underground mine surveying. Introduction to the application of various computer-aided mine design software packages incorporated in upper division mining courses. Prerequisite: completion of sophomore year; Duration: first three weeks of summer term; 3 semester hours.

MNGN308. MINE SAFETY. 1.0 Semester Hr.
(I) Causes and prevention of accidents. Mine safety regulations. Mine rescue training. Safety management and organization. Prerequisite: MNGN210. 1 hour lecture; 1 semester hour. Taken as the first week of summer session.

MNGN309. MINE SAFETY AND OPERATIONS. 2.0 Semester Hrs.
(I, II) Training in practical mine labor functions including: operation of jackleg drills, jumbo drills, muckers, and LHD machines. Training stresses safe operation of equipment and safe handling of explosives. Introduction to front-line management techniques. 2 semester hours. Prerequisite: MNGN210 and MSHA part 48, 40-hour training and 5000.23 certificate.

MNGN310. EARTH MATERIALS. 3.0 Semester Hrs.
(I) Introduction to Earth Materials, emphasizing the structure, formation, distribution and engineering behavior of minerals and rocks. Structural features and processes are related to stress/strain theory and rock mechanics principles. Laboratories and field exercises emphasize the recognition, description and engineering evaluation of natural materials. Lectures and case study exercises present the knowledge of natural materials and processes necessary for mining engineering careers. Prerequisites: GEGN101. 2 hours lecture; 3 hours lab; 3 semester hours.

MNGN311. MINING GEOLOGY. 3.0 Semester Hrs.
(II) Introduction to Mining Geology, emphasizing the formation, distribution, engineering behavior, exploration for and geological aspects of development of ore materials. Laboratories emphasize the recognition, description and engineering evaluation of ores and their hosts. Lectures and case study exercises present the knowledge of ores and ore-forming processes necessary for mining engineering careers. Prerequisites: GEGN 101, (GEOL310 or MNGN310). 2 hours lecture; 3 hours lab; 3 semester hours.

MNGN312. SURFACE MINE DESIGN. 3.0 Semester Hrs.
Analysis of elements of surface mine operation and design of surface mining system components with emphasis on minimization of adverse environmental impact and maximization of efficient use of mineral resources. Ore and coal estimates, unit operations, equipment selection, final pit determinations, short- and longrange planning, road layouts, dump planning, and cost estimation. Prerequisite: MNGN210.

MNGN314. UNDERGROUND MINE DESIGN. 3.0 Semester Hrs.
(II) Selection, design, and development of most suitable underground mining methods based upon the physical and the geological properties of mineral deposits (coal, metallics and nonmetallics), conservation considerations, and associated environmental impacts. Reserve estimates, development and production planning, engineering drawings for development and extraction, underground haulage systems, and cost estimates. 2 hours lecture, 3 hours lab; 3 semester hours. Prerequisite: MNGN210.

MNGN316. COAL MINING METHODS. 3.0 Semester Hrs.
(II) (WI) Devoted to surface and underground coal mining methods and design. The surface mining portion emphasizes area-mining methods, including pertinent design-related regulations, and overburden removal systems. Pit layout, sequencing, overburden equipment selection and cost estimation are presented. The underground mining portion emphasizes general mine layout; detailed layout of continuous, conventional, longwall, and shortwall sections. General cost and manning requirements; and production analysis. Federal and state health and safety regulations are included in all aspects of mine layout. Prerequisite: MNGN210. 2 hours lecture, 3 hours lab, 3 semester hours.

MNGN317. DYNAMICS FOR MINING ENGINEERS. 1.0 Semester Hr.
(II) For mining engineering majors only. Absolute and relative motions, kinetics, work-energy, impulse-momentum and angular impulse-momentum. Prerequisite: MATH213/223, CEEN241. 1 hour lecture; 1 semester hour.

MNGN321. INTRODUCTION TO ROCK MECHANICS. 3.0 Semester Hrs.
Physical properties of rock, and fundamentals of rock substance and rock mass response to applied loads. Principles of elastic analysis and stress-strain relationships. Elementary principles of the theoretical and applied design of underground openings and pit slopes. Emphasis on practical applied aspects. Prerequisite: CEEN241 or MNGN317. 2 hours lecture, 3 hours lab; 3 semester hours.

MNGN322. INTRODUCTION TO MINERAL PROCESSING AND LABORATORY. 3.0 Semester Hrs.
(I) Principles and practice of crushing, grinding, size classification; mineral concentration technologies including magnetic and electrostatic separation, gravity separation, and flotation. Sedimentation, thickening, filtration and product drying as well as tailings disposal technologies are included. The course is open to all CSM students. Prerequisite: PHGN200/210, MATH213/223. 2 hours lecture; 3 hours lab; 3 semester hours.

MNGN333. EXPLOSIVES ENGINEERING I. 3.0 Semester Hrs.
(I) This course gives students in engineering and applied sciences the opportunity to examine and develop a fundamental knowledge including terminology and understanding of explosives science and engineering concepts. Student learning will be demonstrated by assignments, quizzes, and exams. Learning assistance will come in the form of multidisciplinary lectures complemented by a few lectures from experts from government, industry and the explosives engineering community. Pre-requisites: None. 2 hours lecture; 3 hours lab. 3 semester hours.

MNGN335. COMMUNITIES AND NATURAL RESOURCE DEVELOPMENT. 3.0 Semester Hrs.
This course examines the relationship between humans and their environment across space and time. In particular, it focuses on the intersections between natural resource developments and communities. By incorporating theoretical perspectives from environmental anthropology, it draws from frameworks of political ecology, social and environmental justice, indigenous rights, disasters, vulnerability, natural resource management, unequal development, and environmental futures. Drawing from case studies from mining, oil and gas, and energy developments, students will gain knowledge and skills in evaluating how natural resource developments and communities coexist.
MNGN340. COOPERATIVE EDUCATION. 3.0 Semester Hrs.
(I, II, S) Supervised, full-time, engineering-related employment for a continuous six-month period (or its equivalent) in which specific educational objectives are achieved. Prerequisite: Second semester sophomore status and a cumulative grade-point average of at least 2.00. 0 to 3 semester hours. Cooperative Education credit does not count toward graduation except under special conditions.

MNGN350. INTRODUCTION TO GEOTHERMAL ENERGY. 3.0 Semester Hrs.
Geothermal energy resources and their utilization, based on geoscience and engineering perspectives. Geoscience topics include world wide occurrences of resources and their classification, heat and mass transfer, geothermal reservoirs, hydrothermal geochemistry, exploration methods, and resource assessment. Engineering topics include thermodynamics of water, power cycles, electricity generation, drilling and well measurements, reservoir-surface engineering, and direct utilization. Economic and environmental considerations and case studies are also presented. Prerequisites: ENGY200. 3 hours lecture; 3 semester hours.

MNGN398. SPECIAL TOPICS IN MINING ENGINEERING. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

MNGN399. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) (WI) Individual research or special problem projects supervised by a faculty member. When a student and instructor agree on a subject matter, content, method of assessment, and credit hours, it must be approved by the Department Head. Prerequisite: "Independent Study" form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

MNGN404. TUNNELING. 3.0 Semester Hrs.
(I) Modern tunneling techniques. Emphasis on evaluation of ground conditions, estimation of support requirements, methods of tunnel driving and boring, design systems and equipment, and safety. Prerequisite: none. 3 hours lecture; 3 semester hours.

MNGN405. ROCK MECHANICS IN MINING. 3.0 Semester Hrs.
(I) The course deals with the rock mechanics aspect of design of mine layouts developed in both underground and surface. Underground mining sections include design of coal and hard rock pillars, mine layout design for tabular and massive ore bodies, assessment of caving characteristics or ore bodies, performance and application of backfill, and phenomenon of rock burst and its alleviation. Surface mining portion covers rock mass characterization, failure modes of slopes excavated in rock masses, probabilistic and deterministic approaches to design of slopes, and remedial measures for slope stability problems. Prerequisite: MNGN321 or equivalent. 3 hours lecture; 3 semester hours.

MNGN406. DESIGN AND SUPPORT OF UNDERGROUND EXCAVATIONS. 3.0 Semester Hrs.
Design of underground excavations and support. Analysis of stress and rock mass deformations around excavations using analytical and numerical methods. Collections, preparation, and evaluation of in situ and laboratory data for excavation design. Use of rock mass rating systems for site characterization and excavation design. Study of support types and selection of support for underground excavations. Use of numerical models for design of shafts, tunnels and large chambers. Prerequisite: none. 3 hours lecture; 3 semester hours. Offered in odd years.

MNGN407. ROCK FRAGMENTATION. 3.0 Semester Hrs.
(II) Theory and application of rock drilling, rock boring, explosives, blasting, and mechanical rock breakage. Design of blasting rounds, applications to surface and underground excavation. Prerequisite: CEEN241, concurrent enrollment. 3 hours lecture; 3 semester hours.

MNGN408. UNDERGROUND DESIGN AND CONSTRUCTION. 2.0 Semester Hrs.
(I) Soil and rock engineering applied to underground civil works. Tunneling and the construction of underground openings for power facilities, water conveyance, transportation, and waste disposal; design, excavation and support of underground openings. Emphasis on consulting practice, case studies, geotechnical design, and construction methods. Prerequisite: CEEN312 OR MNGN321. 2 hours of lecture; 2 semester hours.

MNGN410. EXCAVATION PROJECT MANAGEMENT. 2.0 Semester Hrs.
(II) Successful implementation and management of surface and underground construction projects, preparation of contract documents, project bidding and estimating, contract awarding and notice to proceed, value engineering, risk management, construction management and dispute resolution, evaluation of differing site conditions claims. Prerequisite: MNGN 210, 2-hour lecture, 2 semester hours.

MNGN414. MINE PLANT DESIGN. 3.0 Semester Hrs.
(I) Analysis of mine plant elements with emphasis on design. Materials handling, dewatering, hoisting, belt conveyor and other material handling systems for underground mines. Prerequisite: MNGN312 and MNGN314. 2 hours lecture, 3 hours lab; 3 semester hour.

MNGN418. ADVANCED ROCK MECHANICS. 3.0 Semester Hrs.

MNGN421. DESIGN OF UNDERGROUND EXCAVATIONS. 3.0 Semester Hrs.
(II) Design of underground openings in competent and broken ground using rock mechanics principles. Rock bolting design and other ground support methods. Coal, evaporite, metallic and nonmetallic deposits included. Prerequisite: MNGN321, concurrent enrollment. 3 hours lecture; 3 semester hours.

MNGN422. FLOTATION. 2.0 Semester Hrs.
Science and engineering governing the practice of mineral concentration by flotation. Interfacial phenomena, flotation reagents, mineral-reagent interactions, and zeta-potential are covered. Flotation circuit design and evaluation as well as tailings handling are also covered. The course also includes laboratory demonstrations of some fundamental concepts. 3 hours lecture; 3 semester hours.

MNGN423. FLOTATION LABORATORY. 1.0 Semester Hr.
(I) Experiments to accompany the lectures in MNGN422. Co-requisite: MNGN421. 3 hours lab; 1 semester hour.
MNGN424. MINE VENTILATION. 3.0 Semester Hrs.
(II) Fundamentals of mine ventilation, including control of gas, dust, temperature, and humidity; ventilation network analysis and design of systems. Prerequisites: PEGN251 or MGN351, CHGN209 or MGN361, and MGN314. 2 hours lecture, 3 hours lab; 3 semester hours.

MNGN425. MINE VENTILATION AND THERMODYNAMICS. 4.0 Semester Hrs.
Fundamentals of mine ventilation and thermodynamics, including heat transfer, flow and control of gas, dust, temperature, and humidity; ventilation network analysis and design of mine ventilation systems. Prerequisite: MGN314, EGGN351 or PEGN251 or instructor consent.

MNGN427. MINE VALUATION. 2.0 Semester Hrs.
(II) Course emphasis is on the business aspects of mining. Topics include time valuation of money and interest formulas, cash flow, investment criteria, tax considerations, risk and sensitivity analysis, escalation and inflation and cost of capital. Calculation procedures are illustrated by case studies. Computer programs are used. Prerequisite: Senior in Mining, graduate status. 2 hours lecture; 2 semester hours.

MNGN428. MINING ENGINEERING EVALUATION AND DESIGN REPORT I. 1.0 Semester Hr.
(I) (WI) Preparation of Phase I engineering report based on coordination of all previous work. Includes mineral deposit selection, geologic description, mining method selection, ore reserve determination, and permit process outline. Emphasis is on detailed mine design and cost analysis evaluation in preparation for MNGN429. Prerequisites: MNGN210, MNGN300, MNGN308, MNGN312, MNGN314, MNGN309, MNGN321, MNGN316, GEOL310 or MNGN310, GEOL311 or MGN311. Co-requisites: MNGN438. 1 hour lecture; 1 semester hour.

MNGN429. MINING ENGINEERING EVALUATION AND DESIGN REPORT II. 2.0 Semester Hrs.
(II) (WI) Preparation of formal engineering report based on all course work in the mining option. Emphasis is on mine design, equipment selection, production scheduling, evaluation and cost analysis. Prerequisite: MNGN428, MNGN210, MNGN300, MNGN308, MNGN312, MNGN314, MNGN309, MNGN321, MNGN316, GEOL310 or MNGN310, GEOL311 or MNGN311, MNGN438, MNGN441. Co-requisites: MNGN322 or MNGN323, MNGN427, and MNGN433. 2 hours lecture; 2 semester hours.

MNGN431. MINING AND METALLURGICAL ENVIRONMENT. 3.0 Semester Hrs.
This course covers studies of the interface between mining and metallurgical process engineering and environmental engineering areas. Wastes, effluents and their point sources in mining and metallurgical processes such as mineral concentration, value extraction and process metallurgy are studied in context. Fundamentals of unit operations and unit processes with those applicable to waste and effluent control, disposal and materials recycling are covered. Engineering design and engineering cost components are also included for some examples chosen. The ratio of fundamentals applications coverage is about 1:1. Prerequisite: none. 3 hours lecture; 3 semester hours.

MNGN433. MINE SYSTEMS ANALYSIS I. 3.0 Semester Hrs.
(II) Application of statistics, systems analysis, and operations research techniques to mineral industry problems. Laboratory work using computer techniques to improve efficiency of mining operations. Prerequisite: Senior or graduate status. 2 hours lecture, 3 hours lab; 3 semester hours.

MNGN434. PROCESS ANALYSIS. 1.0 Semester Hr.
Projects to accompany the lectures in MNGN422. Prerequisite: MNGN422. 3 hours lab; 1 semester hour.

MNGN436. UNDERGROUND COAL MINE DESIGN. 3.0 Semester Hrs.
(II) Design of an underground coal mine based on an actual coal reserve. This course shall utilize all previous course material in the actual design of an underground coal mine. Ventilation, materials handling, electrical transmission and distribution, fluid mechanics, equipment selection and application, mine plant design. Information from all basic mining survey courses will be used. Prerequisite: MNGN316, MNGN321, MNGN414, EGGN329 and MNGN381 or MNGN384. 3 hours lecture, 3 hours lab; 3 semester hours.

MNGN438. GEOSTATISTICS. 3.0 Semester Hrs.
(I) Introduction to elementary probability theory and its applications in engineering and sciences; discrete and continuous probability distributions; parameter estimation; hypothesis testing; linear regression; spatial correlations and geostatistics with emphasis on applications in earth sciences and engineering. Prerequisites: MATH112. 2 hours of lecture and 3 hours of lab. 3 semester hours.

MNGN440. EQUIPMENT REPLACEMENT ANALYSIS. 2.0 Semester Hrs.
(I) Introduction to the fundamentals of classical equipment replacement theory. Emphasis on new, practical approaches to equipment replacement decision making. Topics include: operating and maintenance costs, obsolescence factors, technological changes, salvage, capital investments, minimal average annual costs, optimum economic life, infinite and finite planning horizons, replacement cycles, replacement vs. expansion, maximization of returns from equipment replacement expenditures. Prerequisite: MNGN427, senior or graduate status. 2 hours lecture; 2 semester hours.

MNGN444. EXPLOSIVES ENGINEERING II. 3.0 Semester Hrs.
(II) This course gives students in engineering and applied sciences the opportunity to acquire the fundamental concepts of explosives engineering and science applications as they apply to industry and real life examples. Students will expand upon their MNGN333 knowledge and develop a more advanced knowledge base including an understanding of the subject as it applies to their specific project interests. Assignments, quizzes, concept modeling and their project development and presentation will demonstrate student’s progress. Prerequisite: MNGN333. 2 hours lecture, 3 hours lab, 3 semester hours.

MNGN445. ROCK SLOPE ENGINEERING. 3.0 Semester Hrs.
Introduction to the analysis and design of slopes excavated in rock. Rock mass classification and strength determinations, geological structural parameters, properties of fracture sets, data collection techniques, hydrological factors, methods of analysis of slope stability, wedge intersections, monitoring and maintenance of final pit slopes, classification of slides. Deterministic and probabilistic approaches in slope design. Remedial measures. Laboratory and field exercise in slope design. Collection of data and specimens in the field for deterring physical properties required for slope design. Application of numerical modeling and analytical techniques to slope stability determinations for hard rock and soft rock environments. Prerequisite: none. 3 hours lecture; 3 semester hours.

MNGN452. SOLUTION MINING AND PROCESSING OF ORES. 3.0 Semester Hrs.
(II) Theory and application of advanced methods of extracting and processing of minerals, underground or in situ, to recover solutions and concentrates of value-materials, by minimization of the traditional surface processing and disposal of tailings to minimize environmental impacts. Prerequisite: Senior or graduate status; none. 3 hours lecture; 3 semester hours. Offered in spring.
MNGN460. INDUSTRIAL MINERALS PRODUCTION. 3.0 Semester Hrs.
(II) This course describes the engineering principles and practices associated with quarry mining operations related to the cement and aggregates industries. The course will cover resource definition, quarry planning and design, extraction, and processing of material for cement and aggregate production. Permitting issues and reclamation, particle sizing and environmental practices, will be studied in depth. Prerequisite: MNGN312, MNGN322, MNGN323. 3 hours lecture; 3 semester hours. Offered in spring.

MNGN470. SAFETY AND HEALTH MANAGEMENT IN THE MINING INDUSTRY. 3.0 Semester Hrs.
(I) Fundamentals of managing occupational safety and health at a mining operation. Includes tracking of accident and injury statistics, risk management, developing a safety and health management plan, meeting MSHA regulatory requirements, training, safety audits and accident investigations. 3 hours lecture; 3 semester hours.

MNGN482. MINE MANAGEMENT. 3.0 Semester Hrs.
(II) Basic principles of successful mine management including supervision skills, administrative policies, industrial and human relations, improvement engineering, risk management, conflict resolution and external affairs. Prerequisite: Senior or graduate status. 2 hours lecture and 1 hour case study presentation and discussion per week; 3 hours lecture; 3 semester hours.

MNGN490. ENERGY AND SOCIETY. 3.0 Semester Hrs.
Equivalent with ENGY490, LAIS490, (II). A transdisciplinary capstone seminar that explores a spectrum of approaches to the understanding, planning, and implementation of energy production and use, including those typical of diverse private and public (national and international) corporations, organizations, states, and agencies. Aspects of global energy policy that may be considered include the historical, social, cultural, economic, ethical, political, and environmental aspects of energy together with comparative methodologies and assessments of diverse forms of energy development. Prerequisites: ENGY330/EBGN330 and one of either ENGY310, ENGY320, or ENGY340. 3 hours lecture/seminar; 3 semester hours.

MNGN498. SPECIAL TOPICS IN MINING ENGINEERING. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

MNGN499. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) (WI) Individual research or special problem projects supervised by a faculty member. When a student and instructor agree on a subject matter, content, method of assessment, and credit hours, it must be approved by the Department Head. Prerequisite: “Independent Study” form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

Department Head
Jamal Rostami

Associate Department Head
Jürgen Brune

Professors
Corby Anderson
Kadri Dagdelen
H. Sebnem Düzgün
Linda Figueroa
Priscilla P. Nelson
M. Ugur Ozbay
Patrick R. Taylor

Associate Professors
Hugh B. Miller
Masami Nakagawa
Jamal Rostami

Assistant Professors
Elizabeth A. Holley
Rennie Kaunda
Nicole Smith

Professors of Practice
Jürgen Brune
Barbara Filas
John Grubb
Robert Reeves

Research Professor
D. Erik Spiller

Research Assistant Professor
Richard Gilmore

Adjunct Faculty
Matt Morris
Andy Schissler
William R. Wilson