GEOLOGICAL ENGINEERING (GEGN)

GEGN101. EARTH AND ENVIRONMENTAL SYSTEMS. 4.0 Semester Hrs.

Equivalent with SYGN101,
(I, II, S) Fundamental concepts concerning the nature, composition and evolution of the lithosphere, hydrosphere, atmosphere and biosphere of the earth integrating the basic sciences of chemistry, physics, biology and mathematics. Understanding of anthropological interactions with the natural systems, and related discussions on cycling of energy and mass, global warming, natural hazards, land use, mitigation of environmental problems such as toxic waste disposal, exploitation and conservation of energy, mineral and agricultural resources, proper use of water resources, biodiversity and construction. 3 hours lecture, 3 hours lab; 4 semester hours.

GEGN198. SPECIAL TOPICS. 1-6 Semester Hr.

(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

GEGN199. INDEPENDENT STUDY. 1-6 Semester Hr.

(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

GEGN203. ENGINEERING TERRAIN ANALYSIS. 2.0 Semester Hrs.

(I) Analysis of landforms, geologic processes, principles of geomorphology, mapping, air photo and map interpretation, and engineering uses of geologic information.. Geomorphology of glacial, volcanic, arid, karst, and complex geological landscapes. Introduction to weathering, soils, hillslopes, and drainage systems. Prerequisite: GEGN101. Must be taken concurrently with GEGN204 and GEGN205 for GE majors. 2 hours lecture, 2 semester hours.

GEGN204. GEOLOGIC PRINCIPLES AND PROCESSES. 2.0 Semester Hrs.

(I) Introduction to advanced concepts of physical and historical geology from a scientific perspective. Development of the geologic time scale, relative time, and geochronology. Chemical composition and cycling of elements in the Earth. Plate tectonics and how tectonics influence sea-level history and sedimentation patterns. Evolution and the fossil record. Critical events in Earth history with a focus on North America and Colorado geology. Prerequisite: GEGN101. Must be taken concurrently with GEGN203 and GEGN205 for GE majors. 2 hours lecture, 2 semester hours.

GEGN205. ADVANCED PHYSICAL GEOLOGY LABORATORY. 1.0 Semester Hr.

(I) Basic geologic mapping and data gathering skills, with special emphasis on air photos and topographic and geologic maps. Course will include fieldwork in geomorphic regions of Colorado, with analysis of landforms and geologic processes. Applications of geologic information to solve geologic engineering problems. Prerequisite: GEGN101. Must be taken concurrently with GEGN203 and GEGN204 for GE majors. 3 hours laboratory, 1 semester hour.

GEGN206. EARTH MATERIALS. 3.0 Semester Hrs.

(II) Introduction to Earth Materials, emphasizing the structure, composition, formation, and behavior of minerals. Laboratories emphasize the recognition, description, and engineering evaluation of earth materials. Prerequisite: GEGN101, GEGN203, GEGN204, GEGN205. 2 hours lecture, 3 hours lab; 3 semester hours.

GEGN212. PETROLOGY FOR GEOLOGICAL ENGINEERS. 2.0 Semester Hrs.

(I) Introduction to concepts of rock forming processes as a basis for rock classification. The course will teach practical skills allowing identification of common rock types in hand specimen and in outcrop. Subsurface and nearsurface alteration and weathering processes will be covered, emphasizing recognition of secondary mineral products and the changes to the physical properties of these minerals in the rock masses. Prerequisites: GEGN206. 1 hour lecture, 3 hours lab; 2 semester hours.

GEGN298. SPECIAL TOPICS. 1-6 Semester Hr.

(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

GEGN299. INDEPENDENT STUDY IN ENGINEERING GEOLOGY OR ENGINEERING HYDROGEOLOGY. 1-6 Semester Hr.

(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

GEGN307. PETROLOGY. 3.0 Semester Hrs.

Equivalent with GEOL307,
(II) An introduction to igneous, sedimentary and metamorphic processes, stressing the application of chemical and physical mechanisms to study the origin, occurrence, and association of rock types. Emphasis on the megascopic and microscopic classification, description, and interpretation of rocks. Analysis of the fabric and physical properties. Prerequisite: GEOL321, CHGN209. 2 hours lecture, 3 hours lab; 3 semester hours.

GEGN316. FIELD GEOLOGY. 6.0 Semester Hrs.

(S) Six weeks of field work, stressing geology of the Southern Rocky Mountain Province. Mapping of igneous, metamorphic, and sedimentary terrain using air photos, topographic maps, and other methods. Diversified individual problems in petroleum geology, mining geology, engineering geology, structural geology, and stratigraphy. Formal reports submitted on several problems. Frequent evening lectures and discussion sessions. Field trips emphasize regional geology as well as mining, petroleum, and engineering projects. Prerequisites: GEGN203, GEGN204, GEGN205, GEGN206, GEGN212 or GEGN307, GEOL314, GEOL309, and GEGN317. 6 semester hours (Summer Term).

GEGN317. GEOLOGIC FIELD METHODS. 2.0 Semester Hrs.

(II) Methods and techniques of geologic field observations and interpretations. Lectures in field techniques and local geology. Laboratory and field project in diverse sedimentary, igneous, metamorphic, structural, and surficial terrains using aerial photographs and topographic maps. Geologic cross sections, maps, and reports. Weekend exercises required. Prerequisites: GEGN203, GEGN204, GEGN205, GEOL309 or GEOL308, GEGN212 or completion or concurrent enrollment in GEGN307, and completion or concurrent enrollment in GEOL314. 1 hour lecture, 8 hours field; 2 semester hours.

GEGN330. GEOSCIENTISTS THERMODYNAMICS. 3.0 Semester Hrs.

(I) Introduction to fundamental principles of thermodynamics applied to geosciences and geoengineering. Thermodynamics are used as a tool for evaluating the stability and chemical transformation of minerals and rocks, evolution of vapors and liquids and their reaction paths when subjected to different P-T geological regimes. The course will focus on basic principles of thermodynamics and make use of examples relevant to geoscientists encompassing: i) calculation of thermodynamic properties (volume, heat capacity, enthalpy and entropy) as a function of pressure, temperature and composition, ii) the study of heat transfer and volume change associated to chemical reactions and iii) evaluation of phase stabilities using Gibbs energy minimization and law of mass action. Introduction to pure phase properties, ideal and non-ideal solutions, activities, equilibrium constants, chemical potential, electrolytes, phase rule and Gibbs energy function. Prerequisites: CHGN121, CHGN122 or CHGN125, MATH111, MATH112, GEGN206. May not also receive credit for CHGN209 or CBEN210. 3 hours lecture; 3 semester hours.

GEGN340. COOPERATIVE EDUCATION. 1-3 Semester Hr.

(I, II, S) Supervised, full-time, engineering-related employment for a continuous six-month period (or its equivalent) in which specific educational objectives are achieved. Prerequisite: Second semester sophomore status and a cumulative grade-point average of at least 2.00. 1 to 3 semester hours. Cooperative Education credit does not count toward graduation except under special conditions. Repeatable.

GEGN342. ENGINEERING GEOMORPHOLOGY. 3.0 Semester Hrs.

(I) Study of interrelationships between internal and external earth processes, geologic materials, time, and resulting landforms on the Earth?s surface. Influences of geomorphic processes on design of natural resource exploration programs and siting and design of geotechnical and geohydrologic projects. Laboratory analysis of geomorphic and geologic features utilizing maps, photo interpretation and field observations. Prerequisite: GEGN101. 2 hours lecture, 3 hours lab; 3 semester hours.

GEGN351. GEOLOGICAL FLUID MECHANICS. 3.0 Semester Hrs.

(II) Properties of fluids; Bernoulli's energy equation, the momentum and mass equations; laminar and turbulent flow in pipes, channels, machinery, and earth materials; subcritical and supercritical flow in channels; Darcy's Law; the Coriolis effect and geostrophic flow in the oceans and atmosphere; sediment transport. Prerequisite: CEEN241. 3 hours lecture; 3 semester hours.

GEGN398. SEMINAR IN GEOLOGY OR GEOLOGICAL ENGINEERING. 1-6 Semester Hr.

(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

GEGN399. INDEPENDENT STUDY IN ENGINEERING GEOLOGY OR ENGINEERING HYDROGEOLOGY. 1-6 Semester Hr.

(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

GEGN401. MINERAL DEPOSITS. 4.0 Semester Hrs.

(I) Introductory presentation of magmatic, hydrothermal, and sedimentary metallic ore deposits. Chemical, petrologic, structural, and sedimentological processes that contribute to ore formation. Description of classic deposits representing individual deposit types. Review of exploration sequences. Laboratory consists of hand specimen study of host rock-ore mineral suites and mineral deposit evaluation problems. Prerequisite: CHGN209, GEGN307, GEGN316. 3 hours lecture, 3 hours lab; 4 semester hours.

GEGN403. MINERAL EXPLORATION DESIGN. 3.0 Semester Hrs.

(II) (WI) Exploration project design: commodity selection, target selection, genetic models, alternative exploration approaches and associated costs, exploration models, property acquisition, and preliminary economic evaluation. Lectures and laboratory exercises to simulate the entire exploration sequence from inception and planning through implementation to discovery, with initial ore reserve calculations and preliminary economic evaluation. Prerequisite: GEGN401 and EDNS251. 2 hours lecture, 3 hours lab; 3 semester hours.

GEGN404. ORE MICROSCOPY. 3.0 Semester Hrs.

(II) Identification of ore minerals using reflected light microscopy, micro-hardness, and reflectivity techniques. Interpretation of common ore mineral textures, including those produced by magmatic segregation, open space filling, replacement, exsolution, and recrystallization. Guided research on the ore mineralogy and ore textures of classical ore deposits. Prerequisite: GEOL321, GEGN401. 6 hours lab; 3 semester hours.

GEGN432. GEOLOGICAL DATA MANAGEMENT. 3.0 Semester Hrs.

(I, II, S) Techniques for managing and analyzing geological data, including statistical analysis procedures and computer programming. Topics addressed include elementary probability, populations and distributions, estimation, hypothesis testing, analysis of data sequences, mapping, sampling and sample representativity, linear regression, and overview of univariate and multivariate statistical methods. Practical experience with principles of software programming and statistical analysis for geological applications via suppled software and data sets from geological case histories. Prerequisites: Junior standing in Geological Engineering. 2 hours lecture; 3 hours lab; 3 semester hours.

GEGN438. PETROLEUM GEOLOGY. 4.0 Semester Hrs.

(I) Source rocks, reservoir rocks, types of traps, temperature and pressure conditions of the reservoir, theories of origin and accumulation of petroleum, geology of major petroleum fields and provinces of the world, and methods of exploration for petroleum. Term report required. Laboratory consists of study of well log analysis, stratigraphic correlation, production mapping, hydrodynamics and exploration exercises. Prerequisite: GEOL308 or GEOL309 and GEOL314 or GEOL315; and GEGN316 or GPGN486 or PEGN316. 3 hours lecture, 3 hours lab; 4 semester hours.

GEGN439. MULTIDISCIPLINARY PETROLEUM DESIGN. 3.0 Semester Hrs.

Equivalent with PEGN439,
(II) (WI) This is a multi-disciplinary design course that integrates fundamentals and design concepts in geology, geophysics, and petroleum engineering. Students work in integrated teams consisting of students from each of the disciplines. Multiple open-ended design problems in oil and gas exploration and field development, including the development of a prospect in an exploration play and a detailed engineering field study are assigned. Several detailed written and oral presentations are made throughout the semester. Project economics including risk analysis are an integral part of the course. Prerequisites: GE Majors: GEOL309, GEOL314, GEGN438, and EDNS264; GP Majors: GPGN302, and GPGN303; PE Majors: GEOL308, PEGN316 and PEGN426. 2 hours lecture, 3 hours lab; 3 semester hours.

GEGN466. GROUNDWATER ENGINEERING. 3.0 Semester Hrs.

(I) Theory of groundwater occurrence and flow. Relation of groundwater to surface; potential distribution and flow; theory of aquifer tests; water chemistry, water quality, and contaminant transport. Prerequisites: Calc III (MATH213 or MATH223 or MATH224) and DiffEQ (MATH225 or MATH235) and GEGN351 or MEGN351. 3 hours lecture, 3 semester hours.

GEGN467. GROUNDWATER ENGINEERING. 4.0 Semester Hrs.

(I) Theory of groundwater occurrence and flow. Relation of groundwater to surface water; potential distribution and flow; theory of aquifer tests; water chemistry, water quality, and contaminant transport. Laboratory sessions on water budgets, water chemistry, properties of porous media, solutions to hydraulic flow problems, analytical and digital models, and hydrogeologic interpretation. Prerequisites: Calc III (MATH213, MATH223 or MATH224) and DiffEQ (MATH225 or MATH235) and GEGN351 or MEGN351. 3 hours lecture, 3 hours lab, 4 semester hours.

GEGN468. ENGINEERING GEOLOGY AND GEOTECHNICS. 4.0 Semester Hrs.

(I) Application of geology to evaluation of construction, mining, and environmental projects such as dams, water ways, tunnels, highways, bridges, buildings, mine design, and land-based waste disposal facilities. Design projects including field, laboratory, and computer analysis are an important part of the course. Prerequisite: MNGN321 and CEEN312/CEEN312L. 3 hours lecture, 3 hours lab, 4 semester hours.

GEGN469. ENGINEERING GEOLOGY DESIGN. 3.0 Semester Hrs.

(II) (WI) This is a capstone design course that emphasizes realistic engineering geologic/geotechnics projects. Lecture time is used to introduce projects and discussions of methods and procedures for project work. Several major projects will be assigned and one to two field trips will be required. Students work as individual investigators and in teams. Final written design reports and oral presentations are required. Prerequisite: GEGN468 and EDNS264. 2 hours lecture, 3 hours lab; 3 semester hours.

GEGN470. GROUND-WATER ENGINEERING DESIGN. 3.0 Semester Hrs.

(II) (WI) Application of the principles of hydrogeology and ground-water engineering to water supply, geotechnical, or water quality problems involving the design of well fields, drilling programs, and/or pump tests. Engineering reports, complete with specifications, analysis, and results, will be required. Prerequisite: GEGN467 or equivalent and EPIC264. 2 hours lecture, 3 hours lab; 3 semester hours.

GEGN473. GEOLOGICAL ENGINEERING SITE INVESTIGATION. 3.0 Semester Hrs.

(II) Methods of field investigation, testing, and monitoring for geotechnical and hazardous waste sites, including: drilling and sampling methods, sample logging, field testing methods, instrumentation, trench logging, foundation inspection, engineering stratigraphic column and engineering soils map construction. Projects will include technical writing for investigations (reports, memos, proposals, workplans). Class will culminate in practice conducting simulated investigations (using a computer simulator). 3 hours lecture; 3 semester hours.

GEGN475. APPLICATIONS OF GEOGRAPHIC INFORMATION SYSTEMS. 3.0 Semester Hrs.

(II) An introduction to Geographic Information Systems (GIS) and their applications to all areas of geology and geological engineering. Lecture topics include: principles of GIS, data structures, digital elevation models, data input and verification, data analysis and spatial modeling, data quality and error propagation, methods of GIS projects, as well as video presentations. Prerequisite: GEGN101. 2 hours lecture, 3 hours lab; 3 semester hours.

GEGN481. ANALYTICAL HYDROLOGY. 3.0 Semester Hrs.

Equivalent with GEGN581,
(I) Introduction to the theory, and hydrological application of, probability, statistics, linear algebra, differential equations, numerical analysis, and integral transforms. Prerequisites: GEGN467. 3 hours lecture; 3 semester hours.

GEGN483. MATHEMATICAL MODELING OF GROUNDWATER SYSTEMS. 3.0 Semester Hrs.

(II) Lectures, assigned readings, and direct computer experience concerning the fundamentals and applications of analytical and finite-difference solutions to ground water flow problems as well as an introduction to inverse modeling. Design of computer models to solve ground water problems. Prerequisites: Familiarity with computers, mathematics through differential and integral calculus, and GEGN467. 3 hours lecture; 3 semester hours.

GEGN498. SEMINAR IN GEOLOGY OR GEOLOGICAL ENGINEERING. 1-6 Semester Hr.

(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

GEGN499. INDEPENDENT STUDY IN ENGINEERING GEOLOGY OR ENGINEERING HYDROGEOLOGY. 1-6 Semester Hr.

(I, II) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

GEGN503. INTEGRATED EXPLORATION AND DEVELOPMENT. 3.0 Semester Hrs.

(I) Students work alone and in teams to study reservoirs from fluvial-deltaic and valley fill depositional environments. This is a multidisciplinary course that shows students how to characterize and model subsurface reservoir performance by integrating data, methods and concepts from geology, geophysics and petroleum engineering. Activities include field trips, computer modeling, written exercises and oral team presentations. Prerequisite: none. 2 hours lecture, 3 hours lab; 3 semester hours. Offered fall semester, odd years.

GEGN504. INTEGRATED EXPLORATION AND DEVELOPMENT. 3.0 Semester Hrs.

(I) Students work in multidisciplinary teams to study practical problems and case studies in integrated subsurface exploration and development. The course addresses emerging technologies and timely topics with a general focus on carbonate reservoirs. Activities include field trips, 3D computer modeling, written exercises and oral team presentation. Prerequisite: none. 3 hours lecture and seminar; 3 semester hours. Offered fall semester, even years.

GEGN509. INTRODUCTION TO AQUEOUS GEOCHEMISTRY. 3.0 Semester Hrs.

(I) Analytical, graphical and interpretive methods applied to aqueous systems. Thermodynamic properties of water and aqueous solutions. Calculations and graphical expression of acid-base, redox and solution-mineral equilibria. Effect of temperature and kinetics on natural aqueous systems. Adsorption and ion exchange equilibria between clays and oxide phases. Behavior of trace elements and complexation in aqueous systems. Application of organic geochemistry to natural aqueous systems. Light stable and unstable isotopic studies applied to aqueous systems. Prerequisite: DCGN209 or equivalent. 3 hours lecture; 3 semester hours.

GEGN520. INDUSTRIAL MINERALS AND ROCKS. 3.0 Semester Hrs.

Introduction to the Industrial Minerals industry via appreciation of geologic occurrence, physical and chemical material properties, mining and processing considerations, and marketing of various commodities. Development of skills in preparation of commodity surveys, reserves and resources classifications, and project appraisals. Required field trips to operational sites and trip reports. Mid-term and final exams. Individual student commodity term project and presentation. Prerequisite: Senior or graduate status in earth resources field. 3 hours lecture/seminar; 3 semester hours. Offered alternate years when student demand is sufficient.

GEGN527. ORGANIC GEOCHEMISTRY OF FOSSIL FUELS AND ORE DEPOSITS. 3.0 Semester Hrs.

(II) A study of organic carbonaceous materials in relation to the genesis and modification of fossil fuel and ore deposits. The biological origin of the organic matter will be discussed with emphasis on contributions of microorganisms to the nature of these deposits. Biochemical and thermal changes which convert the organic compounds into petroleum, oil shale, tar sand, coal, and other carbonaceous matter will be studied. Principal analytical techniques used for the characterization of organic matter in the geosphere and for evaluation of oil and gas source potential will be discussed. Laboratory exercises will emphasize source rock evaluation, and oil-source rock and oil-oil correlation methods. Prerequisite: CHGN221, GEGN438. 2 hours lecture; 3 hours lab; 3 semester hours. Offered alternate years.

GEGN530. CLAY CHARACTERIZATION. 2.0 Semester Hrs.

Equivalent with GEOL530,
(I) Clay mineral structure, chemistry and classification, physical properties (flocculation and swelling, cation exchange capacity, surface area and charge), geological occurrence, controls on their stabilities. Principles of X-ray diffraction, including sample preparation techniques, data collection and interpretation, and clay separation and treatment methods. The use of scanning electron microscopy to investigate clay distribution and morphology. Methods of measuring cation exchange capacity and surface area. Prerequisites: GEGN206. 1 hour lecture, 3 hours lab; 2 semester hours.

GEGN532. GEOLOGICAL DATA ANALYSIS. 3.0 Semester Hrs.

(II) Techniques and strategy of data analysis in geology and geological engineering: basic statistics review, analysis of data sequences, mapping, sampling and sample representativity, univariate and multivariate statistics, geostatistics, and geographic information systems (GIS). Practical experience with geological applications via supplied software and data sets from case histories. Prerequisite: MATH323 or MATH530. 3 hours lecture; 3 semester hours.

GEGN561. UNDERGROUND CONSTRUCTION ENGINEERING LABORATORY 1. 0.5 Semester Hrs.

(I) This course provides students with hands-on experience with tools and skills which are commonly used in the underground construction industry. Bi-weekly labs integrate with other courses in the field of Underground Construction and Tunnel Engineering. Co-requisites: CEEN513. 1.5 hours lab; 0.5 semester hours.

GEGN562. UNDERGROUND CONSTRUCTION ENGINEERING LABORATORY 2. 0.5 Semester Hrs.

(II) This course provides students with hands-on experience with tools and skills which are commonly used in the underground construction industry. Bi-weekly labs integrate with other courses in the field of Underground Construction and Tunnel Engineering. Co-requisites: MNGN504 or CEEN523. 1.5 hours lab; 0.5 hours.

GEGN563. APPLIED NUMERICAL MODELLING FOR GEOMECHANICS. 3.0 Semester Hrs.

(I) Course focuses on a comprehensive suite of numerical analysis techniques suited to geotechnical design with a focus on excavations in rock/soil and landslides. Finite element, finite difference, discrete/distinct element and boundary element methods are all discussed with hands-on application workshops using state-of-the-art geomechanics software. Analytical models and pre- and post- processing techniques suited to typical rock engineering problems are developed through assignments. Strength criteria and non-linear inelastic constitutive models for continuum plasticity, brittle fracture and discontinuum deformation are explored in detail. Projects involving real case histories are undertaken to highlight the application of and engineering judgment associated with numerical analysis for problems involving rockmasses. Prerequisites: GEGN468, MNGN321 or CEEN312. 3 hours lecture; 3 semester hours.

GEGN570. CASE HISTORIES IN GEOLOGICAL ENGINEERING AND HYDROGEOLOGY. 3.0 Semester Hrs.

(I) Case histories in geological and geotechnical engineering, ground water, and waste management problems. Students are assigned problems and must recommend solutions and/or prepare defendable work plans. Discussions center on the role of the geological engineer in working with government regulators, private-sector clients, other consultants, and other special interest groups. Prerequisite: GEGN467, GEGN468, GEGN469, GEGN470. 3 hours lecture; 3 semester hours.

GEGN571. ADVANCED ENGINEERING GEOLOGY. 3.0 Semester Hrs.

(I) Emphasis will be on engineering geology mapping methods, and geologic hazards assessment applied to site selection and site assessment for a variety of human activities. Prerequisite: GEGN468 or equivalent. 2 hours lecture, 3 hours lab; 3 semester hours. Offered alternate years.

GEGN573. GEOLOGICAL ENGINEERING SITE INVESTIGATION. 3.0 Semester Hrs.

(I) Methods of field investigation, testing, and monitoring for geotechnical and hazardous waste sites, including: drilling and sampling methods, sample logging, field testing methods, instrumentation, trench logging, foundation inspection, engineering stratigraphic column and engineering soils map construction. Projects will include technical writing for investigations (reports, memos, proposals, workplans). Class will culminate in practice conducting simulated investigations (using a computer simulator). 3 hours lecture; 3 semester hours.

GEGN575. APPLICATIONS OF GEOGRAPHIC INFORMATION SYSTEMS. 3.0 Semester Hrs.

(II) An introduction to Geographic Information Systems (GIS) and their applications to all areas of geology and geological engineering. Lecture topics include: principles of GIS, data structures, digital elevation models, data input and verification, data analysis and spatial modeling, data quality and error propagation, methods of GIS evaluation and selection. Laboratories will use Macintosh and DOS-based personal computer systems for GIS projects, as well as video-presentations. Visits to local GIS laboratories, and field studies will be required. 2 hours lecture, 3 hours lab; 3 semester hours.

GEGN578. GIS PROJECT DESIGN. 1-3 Semester Hr.

(I, II) Project implementation of GIS analysis. Projects may be undertaken by individual students, or small student teams. Documentation of all project design stages, including user needs assessment, implementation procedures, hardware and software selection, data sources and acquisition, and project success assessment. Various GIS software may be used; projects may involve 2-dimensional GIS, 3-dimensional subsurface models, or multi-dimensional time-series analysis. Prerequisite: none. Variable credit, 1-3 semester hours, depending on project. Offered on demand.

GEGN580. APPLIED REMOTE SENSING FOR GEOENGINEERING AND GEOSCIENCES. 3.0 Semester Hrs.

(I) This course offers an introduction to remote sensing in general and radar remote sensing and optical remote sensing in specific as well as their applications to all areas of geoengineering and geosicences. Lecture topics include: principles SAR (Synthetic Aperture Radar) and InSAR (Interferometry of Synthetic Aperture Radar) and their applications, as well as basic concepts of optical remote sensing and its application in geoengineering and geosciences. Topics include various sensors and platforms of SAR data acquisition, SAR data access, SAR data processing, data acquisition and processing of optical remote sensing images. Prerequisites: Graduate standing. 2 hours lecture, 3 hours lab, 3 semester hours.

GEGN581. ANALYTICAL HYDROLOGY. 3.0 Semester Hrs.

Equivalent with GEGN481,
(I) Introduction to the theory, and hydrological application of, probability, statistics, linear algebra, differential equations, numerical analysis, and integral transforms. The course will require more challenging assignments and exams commensurate with graduate credit. Prerequisites: GEGN467. 3 hours lecture; 3 semester hours.

GEGN582. INTEGRATED SURFACE WATER HYDROLOGY. 3.0 Semester Hrs.

Equivalent with ESGN582,
(I) This course provides a quantitative, integrated view of the hydrologic cycle. The movement and behavior of water in the atmosphere (including boundary layer dynamics and precipitation mechanisms), fluxes of water between the atmosphere and land surface (including evaporation, transpiration, precipitation, interception and through fall) and connections between the water and energy balances (including radiation and temperature) are discussed at a range of spatial and temporal scales. Additionally, movement of water along the land surface (overland flow and snow dynamics) and in the subsurface (saturated and unsaturated flow) as well as surface-subsurface exchanges and runoff generation are also covered. Finally, integration and connections within the hydrologic cycle and scaling of river systems are discussed. Prerequisites: Groundwater Engineering (GEGN466/GEGN467), Fluid Mechanics (GEGN351/ EGGN351), math up to differential equations, or equivalent classes. 3 hours lecture; 3 semester hours.

GEGN583. MATHEMATICAL MODELING OF GROUNDWATER SYSTEMS. 3.0 Semester Hrs.

(II) Lectures, assigned readings, and direct computer experience concerning the fundamentals and applications of finite-difference and finite-element numerical methods and analytical solutions to ground water flow and mass transport problems. Prerequisite: A knowledge of FORTRAN programming, mathematics through differential and integral calculus, and GEGN467. 3 hours lecture; 3 semester hours.

GEGN584. FIELD METHODS IN HYDROLOGY. 3.0 Semester Hrs.

(I) Design and implementation of tests that characterize surface and subsurface hydrologic systems, including data logger programming, sensor calibration, pumping tests, slug tests, infiltration tests, stream gauging and dilution measurements, and geophysical (EM, resistivity, and/or SP) surveys. Prerequisites: Groundwater Engineering (GEGN466/GEGN467, Surface Water Hydrology (ESGN582) or equivalent classes. 2 hours lecture; 5 hours lab and field exercises one day of the week. Days TBD by instructor; 3 semester hours.

GEGN585. FLUID MECHANICS FOR HYDROLOGY. 2.0 Semester Hrs.

(I) This class focuses on the fundamental concepts of engineering fluid mechanics as they relate to the study of hydrology. Topics include fluid statics, dynamics, continuity, energy and momentum, dimensional analysis and open channel flow. 2 hours lecture; 2 semester hours.

GEGN586. NUMERICAL MODELING OF GEOCHEMICAL SYSTEMS. 3.0 Semester Hrs.

(II) This course provides quantitative methods for evaluating the geochemical characteristics of geological systems. The course is project based with lectures to provide information about the topic and use of geochemical modeling software. Student projects consist of chemical speciation of waters, activity diagrams, reaction progress models, water-rock interactions, sorption and surface complexation, and kinetic mineral reactions. Students complete an individual project on the geochemical system of their choice and present it to the class. Prerequisite: CEEN550 or CHGC509. 3 hours lecture, 3 semester hours. Offered spring semester, odd years.

GEGN598. SEMINAR IN GEOLOGY OR GEOLOGICAL ENGINEERING. 6.0 Semester Hrs.

(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once, but no more than twice for the same course content. Prerequisite: none. Variable credit: 0 to 6 credit hours. Repeatable for credit under different titles.

GEGN599. INDEPENDENT STUDY IN ENGINEERING GEOLOGY OR ENGINEERING HYDROGEOLOGY. 0.5-6 Semester Hr.

(I, II, S) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/experience and maximums vary by department. Contact the Department for credit limits toward the degree.

GEGN669. ADVANCED TOPICS IN ENGINEERING HYDROGEOLOGY. 1-2 Semester Hr.

(I, II) Review of current literature and research regarding selected topics in hydrogeology. Group discussion and individual participation. Guest speakers and field trips may be incorporated into the course. Prerequisite: none. 1 to 2 semester hours; may be repeated for credit.

GEGN670. ADVANCED TOPICS IN GEOLOGICAL ENGINEERING. 3.0 Semester Hrs.

(I, II) Review of current literature and research regarding selected topics in engineering geology. Group discussion and individual participation. Guest speakers and field trips may be incorporated into the course. Prerequisite: none. 3 hours lecture; 3 semester hours. Repeatable for credit under different topics.

GEGN671. LANDSLIDES: INVESTIGATION, ANALYSIS & MITIGATION. 3.0 Semester Hrs.

(I) Geological investigation, analysis, and design of natural rock and soil slopes and mitigation of unstable slopes. Topics include landslide types and processes, triggering mechanisms, mechanics of movements, landslide investigation and characterization, monitoring and instrumentation, soil slope stability analysis, rock slope stability analysis, rock fall analysis, stabilization and risk reduction measures. Prerequisites: GEGN468, EGGN361, MNGN321, (or equivalents). 3 hours lecture; 3 semester hours.

GEGN672. ADVANCED GEOTECHNICS. 3.0 Semester Hrs.

Practical analysis and application of techniques in weak rock engineering, ground-water control in construction, fluvial stabilization and control, earthquake hazard assessment, engineering geology in construction, engineering geology in dam investigation, and other current topics in geotechnics practice. Prerequisite: GEGN468, CEEN312, CEEN312L and MNGN321. 3 hours lecture; 3 semester hours. Offered alternate years.

GEGN673. ADVANCED GEOLOGICAL ENGINEERING DESIGN. 3.0 Semester Hrs.

(II) Application of geological principles and analytical techniques to solve complex engineering problems related to geology, such as mitigation of natural hazards, stabilization of earth materials, and optimization of construction options. Design tools to be covered will include problem solving techniques, optimization, reliability, maintainability, and economic analysis. Students will complete independent and group design projects, as well as a case analysis of a design failure. 3 hours lecture; 3 semester hours. Offered alternate years.

GEGN681. VADOSE ZONE HYDROLOGY. 3.0 Semester Hrs.

(II) Study of the physics of unsaturated groundwater flow and contaminant transport. Fundamental processes and data collection methods will be presented. The emphasis will be on analytic solutions to the unsaturated flow equations and analysis of field data. Application to non-miscible fluids, such as gasoline, will be made. The fate of leaks from underground tanks will be analyzed. Prerequisites: GEGN467 or equivalent; Math through Differential Equations. 3 hours lecture; 3 semester hours.

GEGN682. FLOW AND TRANSPORT IN FRACTURED ROCK. 3.0 Semester Hrs.

(I) Explores the application of hydrologic and engineering principles to flow and transport in fractured rock. Emphasis is on analysis of field data and the differences between flow and transport in porous media and fractured rock. Teams work together throughout the semester to solve problems using field data, collect and analyze field data, and do independent research in flow and transport in fractured rock. Prerequisites: GEGN581. 3 hours lecture; 3 credit hours. Offered alternate years.

GEGN683. ADVANCED GROUND WATER MODELING. 3.0 Semester Hrs.

(II) Flow and solute transport modeling including: 1) advanced analytical modeling methods; 2) finite elements, random-walk, and method of characteristics numerical methods; 3) discussion of alternative computer codes for modeling and presentation of the essential features of a number of codes; 4) study of selection of appropriate computer codes for specific modeling problems; 5) application of models to ground water problems; and 6) study of completed modeling projects through literature review, reading and discussion. Prerequisite: GEGN509/CHGC509 or GEGN583. 2 hours lecture, 3 hours lab; 3 semester hours.

GEGN698. SPECIAL TOPICS. 6.0 Semester Hrs.

(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once, but no more than twice for the same course content. Prerequisite: none. Variable credit: 0 to 6 credit hours. Repeatable for credit under different titles.

GEGN699. INDEPENDENT STUDY IN ENGINEERING GEOLOGY OR ENGINEERING HYDROGEOLOGY. 0.5-6 Semester Hr.

(I, II, S) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/experience and maximums vary by department. Contact the Department for credit limits toward the degree.

GEGN707. GRADUATE THESIS / DISSERTATION RESEARCH CREDIT. 1-15 Semester Hr.

(I, II, S) Research credit hours required for completion of a Masters-level thesis or Doctoral dissertation. Research must be carried out under the direct supervision of the student's faculty advisor. Variable class and semester hours. Repeatable for credit.